Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Student-Built Pill Dispenser

30.06.2003


High-Tech Device Allows Quadriplegic Man to Take Medication Without a Nurse’s Help


Williams uses a mouth stick to enter a security code and order medication as needed.
Photo by Will Kirk


Whitaker and Stemniski, inspect the computer controls that help deliver pills through a plastic tube to Williams.
Photo by Will Kirk



Four Johns Hopkins undergraduates have a designed and constructed a computer-guided pill dispensing machine that will enable a quadriplegic man to lead a more independent life. Using a mouth stick, Robert Arthur Williams will be able to order one of up to 12 different medications stored inside the machine. Then, when Williams taps a "slam switch" (he has limited mobility in his right arm), the machine will dispense a pill through a tube leading to Williams’ mouth.

While the students worked on the machine, Williams was able to move out of a nursing home and into a three-bedroom Baltimore area house with two companions who assist with his care. "With this machine, I’ll be able to take medicine for pain or muscle spasms at 3 in the morning without waking up one of my helpers," he said. "I’ll be able to take care of myself for longer periods of time now."



Williams, a 40-year-old former welder-mechanic, lost the use of his limbs in 1997 when he was struck by a car while crossing a street. After more than four years in a nursing home on a regimen that required him to take up to a dozen pills a day, Williams sought to live in a more independent setting. "To do that, they told me I’d have to find a way to have my medications dispensed to me whenever I needed them, 24 hours a day," he said. For help, Williams turned to the Volunteers for Medical Engineering, a Baltimore organization that provides customized equipment and devices to people with unusual medical problems.

VME administrators, in turn, referred the request to students in the Senior Design Project course in the Department of Mechanical Engineering at Johns Hopkins. Four engineering students enrolled in the two-semester course were asked to design, build and test a device that would allow Williams to take his own medication, as needed, despite his severely limited mobility. The students could spend no more than $8,000 to produce their prototype. "This project had so many challenging aspects involved in it -- electronics, mechanics, ergonomics and computer programming," said Ross Whitaker, a member of the student design team. "We got a whole array of engineering experience while working on it." In the finished device, Williams’ medicine is stored inside a locked box that houses 12 waterwheel shaped dispensers. Each wheel has 15 pill compartments, enabling the device to store up to 180 pills altogether. When Williams needs a particular pill, he can use his mouth stick to press a series of numbered buttons mounted on the front of the unit. First, he enters a security code, then enters the number that corresponds to the medication he wishes to take. Next, when he taps the slam switch, a computer signals the appropriate waterwheel container to turn, dropping the pill into a Teflon coated chute. Gravity causes the pill to slide down the chute and into a flexible tube leading to Williams’ mouth. Water bottles and straws mounted on his wheelchair and near his bed help him swallow the medication. If he needs additional pills, he can repeat the sequence.


"It required a lot of work, but I think the students did a very thorough job on it," said Alan Markham, a retired engineer and VME member who monitored the project. "The students put a lot of ingenious thought into it."

"This was a very challenging project, but also a very rewarding one," said Paul Stemniski, another of the student inventors. "There was a lot of satisfaction in knowing that we were helping Robert."


Stemniski, 22, a mechanical engineering major from Hockessin, Del., plans to begin graduate engineering studies in the fall at the University of Michigan. Whitaker, 22, a biomedical engineering major from Winslow, Maine, is joining St. Jude Medical Inc. as a field engineer. Their Senior Design Project team also included Mark O’Leary, 21, a mechanical engineering major from Ipswich, Mass., and Yo-Rhin Rhim, 22, a mechanical engineering major from Englewood-Cliffs, N.J. Rhim will enter graduate school at Johns Hopkins in the fall, seeking a master’s degree in mechanical engineering.

The pill dispensing device was one of 11 Johns Hopkins projects completed this year by undergraduates in the Senior Design Project course. The class is taught by Andrew F. Conn, a Johns Hopkins graduate with more than 30 years of experience in public and private research and development. Each team of three or four students, working within budgets of up to $10,000, had to design a device, purchase or fabricate the parts, and assemble the final product. Corporations, government agencies and nonprofit groups provided the assignments and funding. The course is traditionally a well-received hands-on engineering experience for Johns Hopkins undergraduates.


Phil Sneiderman | Johns Hopkins University
Further information:
http://www.jhu.edu/news/home03/jun03/assist.html
http://www.jhu.edu/news_info/news/

More articles from Health and Medicine:

nachricht New study points the way to therapy for rare cancer that targets the young
22.11.2017 | Rockefeller University

nachricht Penn study identifies new malaria parasites in wild bonobos
21.11.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>