Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Life-saving imaging techniques developed at Oxford University

27.06.2003


Improvements in echocardiographic sequence and mammogram analysis techniques lead to earlier detection of disease and defects.


Mammogram Samples Containing Microcalcification Clusters. Original Standard Mammogram Forma


Mammogram Samples Containing Microcalcification Clusters. Foveal Image Processing



Imaging various parts of the body is an established and important method for the diagnosis of diseases such as breast cancer, and is also used extensively for the detection of abnormalities in organs such as the heart. Accurate interpretation, and ultimately correct diagnosis, is dependent on the quality of the images. High quality images, however, can often be extremely difficult to achieve even for experts within a given field. Researchers are constantly striving to improve existing techniques so that better quality images can be produced that will facilitate quicker and more accurate diagnoses. Such improvements have the potential to greatly benefit patients’ prospects by enabling earlier commencement of treatment, thus preserving or even improving patients’ quality of life.

To address these imaging needs, researchers in Oxford’s Department of Engineering Science have developed two new imaging techniques with life saving potential in the medical field. They have achieved important and measurable improvements in image quality that will increase the accuracy of diagnosis of serious diseases and defects.


Echocardiographic Sequence Analysis

Subject movement during capture of an image is a major problem in subsequent diagnosis, as the subject must be tracked as it moves from frame to frame (this movement is known as optical flow or image velocity). Measurement of optical flow can improve the image encoding efficiency, or allow enhancement of the display of the movement of some particular tracked part of the image to assist a clinician attempting to make a diagnosis.

The high noise levels of medical images present many difficulties in image processing. For example, the tracking of cardiac walls in ultrasound images is difficult because of the inherently high level of noise in such images and because of the variation in cardiac motion during the cardiac cycle. Several means of identifying and tracking cardiac walls in echocardiograms have been proposed, but it is a difficult task that requires improvement.

In looking to make these improvements, Oxford researchers have recently developed a method for identifying boundary pixels in echocardiographic sequences or other ultrasound image sequences by utilising phase boundary detection followed by optical flow estimation. New contributions to these basic computer vision processes have resulted in a system that is both fast and robust.

Mammogram Analysis (Microcalcifications)

Early correct diagnosis of breast cancer can mean the difference between life and death for the significant proportion of western women affected by the disease. Small clumps of calcium salts - microcalcifications - are often the earliest signs of breast cancer, and appear in 25% of mammograms. Oxford researchers have developed a new method to identify more reliably these clusters.

Calcifications appear as bright spots or clusters of spots; small clustered whorled calcifications are those most likely to indicate malignancy. The existence of microcalcifications in a mammogram is a clear warning of abnormality. Any program to assist a radiologist detect microcalcifications must miss few, if any, clinically important clusters, but equally must not signal too many false positives. With the increasingly vast number of mammograms to be analysed from screening programmes, automated computer-aided detection methods are a necessity.

Although several methods have been proposed for detecting microcalcification clusters, they have all been limited by faults such as the return of too many false positives. Oxford researchers, however, have recently developed a foveal segmentation method, based on differential local contrast in the image, that will significantly reduce the risk of both false negatives and false positives in identifying calcifications in mammograms.

Kim Bruty | EurekAlert!
Further information:
http://www.admin.ox.ac.uk/

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>