Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Life-saving imaging techniques developed at Oxford University

27.06.2003


Improvements in echocardiographic sequence and mammogram analysis techniques lead to earlier detection of disease and defects.


Mammogram Samples Containing Microcalcification Clusters. Original Standard Mammogram Forma


Mammogram Samples Containing Microcalcification Clusters. Foveal Image Processing



Imaging various parts of the body is an established and important method for the diagnosis of diseases such as breast cancer, and is also used extensively for the detection of abnormalities in organs such as the heart. Accurate interpretation, and ultimately correct diagnosis, is dependent on the quality of the images. High quality images, however, can often be extremely difficult to achieve even for experts within a given field. Researchers are constantly striving to improve existing techniques so that better quality images can be produced that will facilitate quicker and more accurate diagnoses. Such improvements have the potential to greatly benefit patients’ prospects by enabling earlier commencement of treatment, thus preserving or even improving patients’ quality of life.

To address these imaging needs, researchers in Oxford’s Department of Engineering Science have developed two new imaging techniques with life saving potential in the medical field. They have achieved important and measurable improvements in image quality that will increase the accuracy of diagnosis of serious diseases and defects.


Echocardiographic Sequence Analysis

Subject movement during capture of an image is a major problem in subsequent diagnosis, as the subject must be tracked as it moves from frame to frame (this movement is known as optical flow or image velocity). Measurement of optical flow can improve the image encoding efficiency, or allow enhancement of the display of the movement of some particular tracked part of the image to assist a clinician attempting to make a diagnosis.

The high noise levels of medical images present many difficulties in image processing. For example, the tracking of cardiac walls in ultrasound images is difficult because of the inherently high level of noise in such images and because of the variation in cardiac motion during the cardiac cycle. Several means of identifying and tracking cardiac walls in echocardiograms have been proposed, but it is a difficult task that requires improvement.

In looking to make these improvements, Oxford researchers have recently developed a method for identifying boundary pixels in echocardiographic sequences or other ultrasound image sequences by utilising phase boundary detection followed by optical flow estimation. New contributions to these basic computer vision processes have resulted in a system that is both fast and robust.

Mammogram Analysis (Microcalcifications)

Early correct diagnosis of breast cancer can mean the difference between life and death for the significant proportion of western women affected by the disease. Small clumps of calcium salts - microcalcifications - are often the earliest signs of breast cancer, and appear in 25% of mammograms. Oxford researchers have developed a new method to identify more reliably these clusters.

Calcifications appear as bright spots or clusters of spots; small clustered whorled calcifications are those most likely to indicate malignancy. The existence of microcalcifications in a mammogram is a clear warning of abnormality. Any program to assist a radiologist detect microcalcifications must miss few, if any, clinically important clusters, but equally must not signal too many false positives. With the increasingly vast number of mammograms to be analysed from screening programmes, automated computer-aided detection methods are a necessity.

Although several methods have been proposed for detecting microcalcification clusters, they have all been limited by faults such as the return of too many false positives. Oxford researchers, however, have recently developed a foveal segmentation method, based on differential local contrast in the image, that will significantly reduce the risk of both false negatives and false positives in identifying calcifications in mammograms.

Kim Bruty | EurekAlert!
Further information:
http://www.admin.ox.ac.uk/

More articles from Health and Medicine:

nachricht Custom-tailored strategy against glioblastomas
26.09.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New leukemia treatment offers hope
23.09.2016 | King Abdullah University of Science and Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

Heavy construction machinery is the focus of Oak Ridge National Laboratory’s latest advance in additive manufacturing research. With industry partners and university students, ORNL researchers are designing and producing the world’s first 3D printed excavator, a prototype that will leverage large-scale AM technologies and explore the feasibility of printing with metal alloys.

Increasing the size and speed of metal-based 3D printing techniques, using low-cost alloys like steel and aluminum, could create new industrial applications...

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Paper – Panacea Green Infrastructure?

30.09.2016 | Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

 
Latest News

First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

30.09.2016 | Materials Sciences

New Technique for Finding Weakness in Earth’s Crust

30.09.2016 | Earth Sciences

Cells migrate collectively by intermittent bursts of activity

30.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>