Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Studies show new role for protein in cancer development

27.06.2003


In two groundbreaking papers published in two prestigious journals over the last two months, University of Southern California researchers have provided evidence of two previously unknown functions for a protein that is central to the transcription of genes. Both papers shed light on the role this protein-called TATA-binding protein, or TBP-may play in promoting the development of cancer.



"What we’ve found is that changes in the cellular concentrations of this critical transcription factor cause specific changes in gene expression patterns, which then contribute to cellular transformation, and a cancer cell phenotype," says Deborah Johnson, Ph.D., professor of molecular pharmacology and toxicology at the USC School of Pharmacy and biochemistry and molecular biology in the Keck School of Medicine.

The first paper, published in Molecular and Cell Biology in May, showed that TBP levels are increased by oncogenic proteins like Ras, one of the first genes found to be involved in human cancers. And that increase, Johnson says, has implications for the development of cancer at the cellular level.


In the cellular production of proteins, the information encoded in DNA is transcribed different types of RNA-ribonucleic acid. This process occurs with the help of enzymes called RNA polymerases. There are three RNA polymerases found in a typical cell, and TATA-binding protein has been shown-by Johnson’s lab and others-to be absolutely critical to the function of all of them.

Because TBP is so central and so basic to the process of transcription, Johnson explains, it was long assumed that its cellular levels remain steady at all times. "It was viewed as a housekeeping protein. Nobody even thought that it could be regulated," she said.

When Johnson questioned that assumption and tried manipulating TBP levels in cells, she found that they could indeed be upregulated-and that the proteins that were especially good at increasing TBP levels were proteins like Ras, which are associated with cancer.

Knowing that oncogenic proteins can raise TBP levels in a laboratory dish was one thing; finding out what happens in a living cell when TBP levels rise was another. "That was the next question we asked," Johnson says. "We wanted to know whether TBP was actually driving Ras to transform normal cells into malignant cells."

In a series of experiments and collaborations with a number of researchers from the Keck School of Medicine, Johnson was able to show that when cells are manipulated so that TBP levels can no longer be increased, Ras is no longer able to transform cells.

And when she increased TBP levels without Ras being present, she found that oncogenesis continued unabated. "In fact," notes Johnson, "we tested it in an animal model, and found that increased TBP alone, without Ras, still leads to tumors in nude mice."

Whether TBP plays a similar role in the development of cancer in humans is something that Johnson is now pursuing in collaboration with USC/Norris Cancer Center pathologist Louis Dubeau, M.D., Ph.D., testing tumor cells for their TBP levels. "If TBP is a true contributor to oncogenesis," Johnson says, "we should see increased TBP levels in a clinically relevant proportion of patients." Preliminary data gathered thus far support this hypothesis.

The second study, published in the June issue of The EMBO Journal (EMBO is the European Molecular Biology Organization), looked at the other side of the oncogenesis coin. "We found in the Molecular and Cellular Biology paper that oncogenes like Ras can increase cellular concentrations of TBP," notes Johnson. "If that’s true, then we might expect tumor suppressors to reduce the level of TBP."

To find out if their expectations were correct, Johnson and her colleagues looked at p53, a tumor suppressor that’s found to be mutated in about half of all human cancers. "P53 keeps cells from growing and proliferating out of control," Johnson says.

Like TBP, p53 is also a transcription factor, regulating expression of the genes involved in cell cycle control and apoptosis, the cellular version of suicide. And previous studies have shown that p53 can bind to TBP. But what the biological relevance of that was had gone unreported, until now.

To determine the relevance, Johnson manipulated the levels of p53 in cells, watching to see what happened with TBP in those cells. What she found was that p53 seems to suppress an important function of TBP, preventing it from working with one of the RNA polymerases. "It’s not changing the cellular concentration of TBP," Johnson explains, "but is instead changing its effective concentration, preventing TBP from forming a complex with other proteins. Forming that complex is essential to TBP’s role in transcribing genes."

These two studies, Johnson points out, are really just complementary parts of a larger picture of the role of TBP in oncogenesis. "With these papers," she says, "we now have two very different scenarios that show that increasing the TBP concentration in a cell leads to that cell’s ability to transform into a tumor cell. And in the second scenario, we have a tumor suppressor that decreases the effective concentration of TBP by altering its ability to function. Together, they both contribute to the ability of the cell to transform from normal to malignant."



Sandra A. S. Johnson, Louis Dubeau, Michael Kawalek, Andrew Dervan, Axel H. Schonthal, Chi V. Dang, Deborah Johnson, "Increased Expression of TATA-Binding Protein, the Central Transcription Factor, Can Contribute to Oncogenesis." Molecular and Cellular Biology, May 2003.

Diane Crighton, Annette Woiwode, Cheng Zhang, Nihar Mandavia, Jennifer P. Morton, Lorna J. Warnock, Jo Milner, Robert J. White, Deborah L. Johnson, "p53 Represses RNA Polymerase III Transcription by Targeting TBP and Inhibiting Promoter Occupancy by TFIIB." The EMBO Journal, June 2, 2003.

Jon Weiner | EurekAlert!
Further information:
http://www.usc.edu/

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>