Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biochips in Drug Development

26.06.2003


Figure 1: Ligand fishing (BIA-MS coupling)


Figure 2: ADME assays of small compounds binding to HSA


Biomolecular interaction analysis (BIA) using SPR (surface plasmon resonance) biosensors is now utilised increasingly in nearly all phases of drug development. The BIA system consists out of a light source emitting near infrared light, a sensor microchip, an automated liquid handling system with constant flow and a diode array position-sensitive detector. One of the two interacting partners (referred to as the ligand) is immobilized on the sensor surface. The other binding partner, called the analyte, is directed over the surface in a constant flow system allowing to monitor the interaction of the binding partners in “real time”.

BIA covers a broad range of applications in target identification and validation, secondary screens and lead optimisation, early ADME assays as well as testing immunoreactivity.

Assay development and functional assays of proteins are the most commonly used areas of applications of BIA in drug development.



Advantages of SPR-based measurements are the possibility to measure in real time without the need of labelling yielding highly reproducible kinetic data with low sample consumption.

Ligand fishing

BIA-technology is ideally suited as a micro-affinity purification platform allowing on-line detection of binding events and the direct quantification of bound material on biological surfaces of interest.

Kinetic parameters may be obtained as additional information. Provided that a binding partner has been captured on the sensor chip it can be recovered by a gentle elution for further downstream analyses like mass spectrometry or western blot analysis (see figure 1).

In comparison to classical chromatographic methods biosensor systems show reduced unspecific binding, are compatible with small volume recovery and are readily automated.

The identification of unknown ligands is of particular interest for revealing function of orphan receptors, for the detection of cellular interaction networks and for testing the biocompatibility of novel surface coatings.

Target validation

Genomics and proteomics based techniques have provided a lot of new potential targets which has to be validated to prove that a DNA, RNA or protein molecule is directly involved in a disease process and is therefore a suitable target for the development of new therapeutic compounds.

The assessment of biological function, involvement in biological pathways and role in pathogenesis of potential targets can be achieved by mapping and validation of protein interaction networks in vivo and in vitro.

Yeast two hybrid and phage display are classical approaches for systematic protein interaction screening capable to probe millions of interactions. Positives obtained from these screening technologies can be validated using BIA technology.

Furthermore, additional parameters relevant for the interaction of interest can be investigated. This could be interactions with multiple components, effects of cofactors, pH-changes or the role of posttranslational modifications.

Lead optimisation

Hit validation is needed to determine whether a molecule identified in a screen or assay will eventually lead to a drug.

Therefore secondary assays generating data about potency, selectivity and functional biochemical activity have to be performed.

BIA technology has an enormous capability for the rapid confirmation of hits from high throughput screens by a comprehensive kinetic characterisation of potential lead compounds.

Information about affinities, rates of association and dissociation in complex formation and binding stoichiometries is very valuable for a ranking and optimisation of lead compounds. Even compounds binding with low affinity or transient kinetics, often found in early phases of drug development, can accurately be identified.

The kinetic information obtained by functional assays together with the knowledge about structural properties of biomolecules allows predictions on structure activity relationships.

Lead optimisation is an iterative process involving computer-assisted molecular modelling, chemical synthesis of new compounds and functional assays.

BIA technology is used in lead optimisation by linking compound structural information with a comprehensive kinetic characterisation of ligand binding.

ADME

ADME assays (adsorption, distribution, metabolism, elimination) become more and more important even in the earlier phases of the drug development process.

BIA assays provide very valuable information for a cost-effective in vitro characterisation of potential drug candidates in early ADME studies, although there are no methods available for accurately predicting what will happen to a drug in vivo.

SPR biosensor technology has already been applied for the binding of potential drug candidates to serum proteins, for analysing the adsorption of small molecules to artificial membranes immobilised on sensor chips and for measuring the influence of compounds on metabolic pathways.

The pharmacokinetic properties of small molecule drugs are a function of the reversible binding to serum proteins such as serum albumin, alpha 1-acid glycoprotein or gamma globulins, reducing the bioavailibility of the drug (see figure 2).

Biaffin offers a BIA assay for analysing the binding of small molecule compounds to high density serum protein surfaces yielding valuable information about affinitiy, solubility and binding stoichiometry of potential drug candidates.

Immune response

Newly designed pharmaceuticals can cause an unwanted immune response. In preclinical studies such potentials can be recognised in animal studies.

BIA technology can detect antibodies against new drugs in animal serum samples. With appropriate control experiments positive binding signals of low antibody levels can clearly be identified as a specific signal despite of the complexity of the protein mixture in serum samples.

Dr. Stephan Drewianka | Biaffin GmbH & Co KG
Further information:
http://www.biaffin.com/drug_development.htm
http://www.innovations-report.de/html/profile/profil-1117.html

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Tune your radio: galaxies sing while forming stars

21.02.2017 | Physics and Astronomy

Improved Speech Intelligibility and Automatic Speech-to-Text Conversion for Call Centers

21.02.2017 | Trade Fair News

36 big data research projects

21.02.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>