Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researching a workout device to help keep the balance system in shape

25.06.2003


Astronauts on extended missions go into space with a spring in their step but rarely return from the International Space Station (ISS) walking steady.



“We want to develop a training device to counter the effects while in space and help astronauts recover more quickly upon return to Earth,” said Dr. Jacob Bloomberg, a researcher on the National Space Biomedical Research Institute’s (NSBRI) neurovestibular adaptation team.

Returning astronauts walk with an unstable gait and wide stance and can take almost two weeks to fully recover their footing after a long-duration flight on the ISS. A new treadmill training system being researched could help shorten or remove post-flight balance problems and eventually help elderly patients and others with similar problems.


Bloomberg and his team are using a new, integrated research protocol to discover and test ways to counter the ill effects of space flight on the balance and walking systems. The goal of the research is to develop an in-flight treadmill training system that will improve the brain’s ability to readapt to gravity environments whether it is a return to Earth or a landing on Mars. In addition to developing training programs, Bloomberg is working on better ways to evaluate balance and walking function in returning astronauts.

“Rather than study individual systems in isolation we’re looking at how multiple systems interact and adapt during space flight to cause balance problems,” said Bloomberg, senior research scientist at NASA’s Johnson Space Center. “We are working to understand how multiple, interdependent full-body sensory-motor systems are integrated to produce a complex behavior like walking.”

A person’s performance on a unique series of integrated tests – an obstacle course, a treadmill and visual acuity test – will help the researchers develop solutions to not only balance and mobility, but also eye coordination. These tests will serve to evaluate the effectiveness of in-flight interventions designed to reduce the negative effects of space flight on post-flight balance and walking function.

During testing, subjects walk on a treadmill while head, eye and body movements are recorded with a video-based motion capture system. At the same time, other sensors record body accelerations and the vertical forces that occur during each foot-fall; all this while subjects identify symbols on a computer screen to measure visual acuity. With this unique set-up, Bloomberg and his group can determine how the nervous system responds and adapts to different alterations in sensory input during walking. To complement the treadmill test, the obstacle course serves to help understand the practical implications of sensory-motor changes that lead to post-flight walking disturbances.

“This work will motivate the next generation of treadmill devices used on the International Space Station. While astronauts are training to maintain aerobic capacity and muscle strength, they will also be training their brains to readapt to a gravity environment,” Bloomberg said. “Everyone is told they need to exercise to maintain their heart and muscles, but rarely do people train to keep their balance system in shape.”

Further development of these testing protocols will not only help develop better tools to diagnose problems for elderly patients and others with balance problems, but may also help train them to overcome these problems.

###

The NSBRI, funded by NASA, is a consortium of institutions studying the health risks related to long-duration space flight. The Institute’s research and education projects take place at more than 70 institutions across the United States.


Liesl Owens | NSBRI
Further information:
http://www.nsbri.org/NewsPublicOut/Release.epl?r=65

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

Bodyguards in the gut have a chemical weapon

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>