Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Contraceptive pill produced from potato toxin

24.06.2003


Dutch researcher Patrick Vronen from Wageningen University has investigated several methods for converting toxins in high-starch potatoes into a raw material for steroid hormones used, for example, in contraceptive pills.



The molecular structure of the potato toxin solanidine, which is found in high-starch potatoes, is similar to that of diosgenine. Diosgenine is the current precursor for synthetic hormones. Patrick Vronen converted solanidine into dehydropregnenolone acetate (DPA). This substance is an intermediary product in the production of hormones that are similar to progesterone and cortisone.

The interest in the conversion of potato toxins into the intermediary DPA, is partly due to the increasing price of the current raw material for steroid hormones. The current precursor for diosgenine is isolated from Costus speciosus, a ginger species from China. The availability of diosgenine and the monopoly position of China in the supply of the raw material both pose risks.


The direct conversion of the potato toxin solanidine into the intermediary product DPA would have a signifcant economic advantage because the existing DPA factories could continue to operate. In these factories the raw material from ginger is converted into DPA, which is then processed into the desired steroid hormone products. Therefore the existing factories could be used to convert the DPA obtained from the potato toxin solanidine into the final hormone product.

Vronen tested various methods for converting the toxin into the raw material but none of these resulted in the desired end product. Only a reaction involving the toxic substance bromine cyanide resulted in a product from which the intermediary DPA could be made. With the aid of calculations, Vronen then showed that bromocyanide is one of the few reagents that can break the correct bonds within solanidine. However, due to the toxicity of bromine cyanide this method cannot be used to produce hormones on a large scale.

Nalinie Moerlie | alfa
Further information:
http://www.nwo.nl

More articles from Health and Medicine:

nachricht Research reveals how diabetes in pregnancy affects baby's heart
13.12.2017 | University of California - Los Angeles Health Sciences

nachricht Routing gene therapy directly into the brain
07.12.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Gecko adhesion technology moves closer to industrial uses

13.12.2017 | Information Technology

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure

13.12.2017 | Physics and Astronomy

Research reveals how diabetes in pregnancy affects baby's heart

13.12.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>