Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular ’Piggyback Ride’ carries Alzheimer’s protein into brain

24.06.2003


Scientists studying the brains of mice have discovered how the toxic protein that destroys the brain cells of Alzheimer’s patients enters the brain. When the researchers gave mice a drug that blocked the process, flow of the protein into the brain was virtually halted and existing accumulations of it in the brain plummeted by more than 70 percent. The results of the research will be published in the July 1 issue of Nature Medicine.



The new findings center on amyloid beta, a tiny protein molecule that accumulates over time to form tell-tale plaques in the brain tissue of Alzheimer’s patients. While various cells within the brain itself produce amyloid beta, that amount may be just the tip of the iceberg. Mounting evidence suggests that the bulk of amyloid beta is produced in cells throughout the body and gets circulated in the blood. The new study reveals for the first time how the protein gets from the blood into the brain, thwarting the brain’s elaborate filtration mechanism that normally keeps away toxins. In mice that had been genetically engineered to develop Alzheimer’s, the process ran wild, pouring amyloid beta into the brain at eight times the rate of healthy mice.

"For more than a decade we’ve known that this protein wreaks havoc in the brains of Alzheimer’s patients, but we haven’t known how it gets there or how to prevent it from getting there. This study answers both of those basic questions, and opens an entirely new avenue for the treatment of Alzheimer’s disease," said lead author Berislav Zlokovic, M.D., Ph.D., of the University of Rochester Medical Center.


Since 1992, Zlokovic’s research has focused on how amyloid beta protein in the blood is able to pass through the blood-brain barrier, a thin layer of cells that lines the inner walls of the brain’s blood vessels. The blood-brain barrier blocks the passage of toxins while allowing the flow of oxygen, sugar, and other nutrients to brain cells. In the current study, Zlokovic and his colleagues found that amyloid beta protein molecules cannot flow through the blood-brain barrier unaided. Rather, they get through by riding piggyback on a much larger molecule, called RAGE, which is nontoxic and moves unfettered across the blood-brain barrier. Normally, RAGE is produced in small amounts by the cells that form the blood-brain barrier. But in mice that were genetically engineered to develop Alzheimer’s disease, Zlokovic found that RAGE was produced in huge amounts – eight times normal – and ferried an avalanche of amyloid beta into the brain.

Zlokovic became interested in RAGE several years ago while studying amyloid beta proteins that had been culled from the brains of Alzheimer’s patients who, years before their deaths, had agreed to donate their brains to the University’s Alzheimer’s research program. In the donated brain tissue, Zlokovic spotted something he hadn’t seen before: Some of the amyloid beta proteins were attached to much larger molecules. The larger molecules turned out to be RAGE (short for receptor for advanced glycation end products), which had been observed in brain tissue by other researchers, but whose function was a mystery. Zlokovic’s new study was conceived as a series of experiments designed to solve it.

In the first experiment, he injected mice with an agent, called anti-RAGE, that binds to RAGE molecules and disables them, making them unable to bind with amyloid beta proteins. Then he injected amyloid beta proteins into the mice and observed that, with the RAGE molecules disabled, transport of the amyloid beta proteins across the blood-brain barrier came to a sudden halt.

In another experiment, he administered a RAGE look-alike, called soluble RAGE. The soluble RAGE molecules attached themselves to amyloid beta proteins, but unlike RAGE, were unable to transport the proteins across the blood-brain barrier. With the amyloid beta proteins bound to the soluble RAGE molecules, however, the RAGE molecules naturally present in the mice were not able to bind to the proteins. In this experiment, like the first, the flow of amyloid beta across the blood-brain barrier also stopped abruptly.

With evidence that RAGE was involved in the transport of amyloid beta across the blood-brain barrier, the research team obtained mice in which the gene that produces the RAGE molecule was disabled or "knocked out" by genetic engineering. When the researchers injected amyloid beta protein into these mice, none of it crossed the blood-brain barrier, confirming RAGE’s function.

Another experiment was conducted in mice that were genetically engineered to develop Alzheimer’s disease. In half of the mice the team administered soluble RAGE once a day; the remaining mice were not given the agent. After three months, the researchers compared the amyloid beta levels in the brains of each group. In the group that had received soluble RAGE, both the amount of amyloid beta protein in their brains and the size of amyloid plaques were reduced by 70 percent compared to the mice that did not receive the agent.

The researchers also found that as RAGE transported increased levels of amyloid beta into the brain, blood flow within the brain was reduced by half. When soluble RAGE was administered to block the process, blood flow to the brain returned to normal. The new finding – that blood flow to the brain is sharply reduced in Alzheimer’s mice – suggests that decreased cerebral blood flow may partially account for the confusion and dementia that plague Alzheimer’s patients.

"The experiments in this study revealed a great deal of new information about Alzheimer’s disease," said Zlokovic. "First, it is now very clear that the body regulates the movement of amyloid beta proteins across the blood-brain barrier. Second, we’ve shown that that we can use a drug to stop the flow of amyloid beta from the blood to the brain. Finally, we learned that when we block the flow of amyloid beta over time, the brain substantially rids itself of amyloid beta and the amyloid plaques shrink dramatically.

"For patients with Alzheimer’s disease, these findings suggest that we can develop a new class of drugs that work by blocking the flow of the toxic Alzheimer’s protein into the brain," said Zlokovic.

The researchers are looking ahead to clinical trials of new drug candidates. They are planning studies to determine whether soluble RAGE is likely to be safe when administered to people, and are working to identify other molecules that work in the same way as soluble RAGE.


###
Collaborators in the study, which was funded by a grant from the National Institutes of Health, included Mark Kindy, Ph.D., from the University of South Carolina and David Stern, Ph.D. and Shi Du Yan, Ph.D. from Columbia University.

Christopher DiFrancesco | EurekAlert!
Further information:
http://www.urmc.rochester.edu/

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>