Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists identify genetic link between cancer and aging

23.06.2003


A collaboration of scientists mainly from the Fred Hutchinson Cancer Center and at the University of Washington (Seattle) has made an important discovery linking the powerful cancer-causing oncogene, myc, with the gene behind the premature aging disease, Werner syndrome. Their finding reveals that the MYC oncoprotein turns-on Werner syndrome gene expression, and posits the Werner syndrome gene as a potentially important participant in MYC-induced tumorigenesis.



Werner syndrome is a rare genetic disorder characterized by the appearance of old age beginning after puberty. It is caused by mutations in the Werner syndrome gene (WRN), which resides on the short arm of human chromosome 8. The WRN gene encodes a DNA helicase (an enzyme that unwinds DNA) involved in DNA replication and repair.

As published in the July 1 issue of Genes & Development, Dr. Carla Grandori and colleagues have discovered that WRN expression is regulated by the MYC oncoprotein, which is implicated in about one third of all human cancers.


As Dr. Grandori explains, "We uncovered a role in oncogenesis for a gene, WRN, whose function was known to be important in maintaining youth of the whole organism. This study was prompted by the characteristic ability of tumor cells in culture to multiply indefinitely and thus to exhibit permanent youth. Our results are consistent with the hypothesis that genetic programs that limit organismal aging may, at the cellular level, promote tumor development, thus constituting a double sword. On the positive side, we hope that our study will provide a new therapeutic target able to trigger tumor cells into senescence."

Dr. Grandori and colleagues found that MYC binds directly to the WRN gene promoter to activate WRN expression in vitro and in vivo. The authors demonstrated that in both WRN-deficient and WRN-depleted human cells, MYC over-expression drives the cells into a state of permanent growth arrest, called cellular senescence. This finding suggests that WRN normally functions to prevent cellular senescence and thereby promote cell proliferation.

The implications of these findings for tumor development is that up-regulation of WRN by oncogenic MYC expression could contribute to tumor formation by suppressing cellular senescence. In support of this hypothesis, the authors note that Werner syndrome patients, although predisposed to certain cancers, do not typically display MYC-associated tumor types (e.g. Burkitt or diffuse large B-cell lymphomas, breast and prostate carcinomas).

While further work is needed to delineate the precise role of WRN in tumorigenesis, this report brings to light a heretofore unrecognized therapeutic approach: That the inhibition of WRN in MYC-induced tumor cells could induce cellular senescence and impede cancer progression.

In commenting on the work one of the participating investigators, Dr. Ray Monnat of the University of Washington notes that "We have recognized deep links between cell senescence and tumorigenesis for some time. It’s gratifying to see another of these links identified that is conceptually interesting and may have practical importance."

Heather Cosel | EurekAlert!
Further information:
http://www.cshl.org/

More articles from Health and Medicine:

nachricht World first: Massive thrombosis removed during early pregnancy
20.07.2017 | Universitätsspital Bern

nachricht Therapy of preterm birth in sight?
19.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>