Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Science Of Strawberries

20.06.2003


Goran Ivanisevic’s offer to serve strawberries at this year’s Wimbledon may be a more useful job than he imagined. As well as delicious with cream, this symbol of the summer could help fight cancer according to scientists.



Research has shown that natural plant chemicals in strawberries can inhibit the growth of cancer cells. And now scientists at the Institute of Food Research have begun work to identify the compounds responsible.

“The modern strawberry is just one of hundreds of varieties cultivated worldwide. There are also about twenty wild species. They all have different properties - visible in the size, shape and colour of the fruit, or the size and abundance of flowers. The aim of our project is to identify the properties that play a role in inhibiting carcinogenesis”, says Professor Richard Mithen, Head of Plant Foods for Health Protection at IFR.


The wild ancestors of the most commonly cultivated strawberry today, Fragaria ananassa, can be white, yellow, taste like pineapples, or the stalks can even point the fruit towards the sun. The Institute of Food Research will study both wild and cultivated varieties, and is growing white and pale yellow strawberries as well as red.

In the future, the work could help the team to develop new varieties in which the anticarcinogenic compounds are enhanced.

One of the strawberry chemicals that may play a role against cancer is ellagic acid. Strawberries and raspberries are the main dietary source of ellagic acid in the west. Research by Dr Yannick Ford at Horticulture Research International [1] has highlighted the variation in ellagic acid content between varieties, with some white-fruited strawberries having particularly high levels.

Professor Mithen says, “The great thing about doing research on the health benefits of strawberries is that people enjoy eating them, as I’m sure we’ll see at Wimbledon next week!”

Other strawberry facts:
  • Professor Mithen’s research is part of a long term project, and one of many IFR projects analysing the health benefits of fruits and vegetables.

  • IFR scientists have also developed a rapid spectroscopy method for detecting adulteration of hand-pressed fresh strawberry and raspberry purees.

  • The modern strawberry, Fragaria ananassa, is a hybrid between Fragaria chiloenis from Chile and the North American Fragaria virginiana. The Chilean strawberry, transported to France in 1714, was mainly selected for its large size, while the North American for its hermaphroditism. Hermaphrodite flowers simplify crop production as they enable a crop to be cultivated from a single source.

  • The native British wild strawberry is a “diploid” – it has two sets of chromosomes, as in humans. The most commonly cultivated strawberry, Fragaria ananassa, is an octoploid with eight sets. This makes it a good candidate for demonstrating DNA extraction - with eight copies of each gene in the strawberry genome, strawberries are packed full of it.

  • The strawberry has a unique structure and is known as a “false” fruit. Unlike any other fruit, the seeds are the true fruits of the plant and are the black dots on the surface. The fleshy ‘berry’ to which they are attached is an enlarged, softened receptacle.

  • Both the strawberry and the raspberry belong to the rose family. The English word strawberry comes from the erratic straying habit of the plant, which it shares with many other members of the rose family such as the blackberry.

  • A variety developed in 1821 by English market gardener Michael Keens is the ancestor of virtually all modern varieties commercially cultivated today. Its size and flavour caused a sensation.

  • The Latin name fraga refers to the fruit’s fragrance.

Zoe Dunford | alfa
Further information:
http://www.ifr.ac.uk

More articles from Health and Medicine:

nachricht Improving memory with magnets
28.03.2017 | McGill University

nachricht Graphene-based neural probes probe brain activity in high resolution
28.03.2017 | Graphene Flagship

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>