Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Science Of Strawberries


Goran Ivanisevic’s offer to serve strawberries at this year’s Wimbledon may be a more useful job than he imagined. As well as delicious with cream, this symbol of the summer could help fight cancer according to scientists.

Research has shown that natural plant chemicals in strawberries can inhibit the growth of cancer cells. And now scientists at the Institute of Food Research have begun work to identify the compounds responsible.

“The modern strawberry is just one of hundreds of varieties cultivated worldwide. There are also about twenty wild species. They all have different properties - visible in the size, shape and colour of the fruit, or the size and abundance of flowers. The aim of our project is to identify the properties that play a role in inhibiting carcinogenesis”, says Professor Richard Mithen, Head of Plant Foods for Health Protection at IFR.

The wild ancestors of the most commonly cultivated strawberry today, Fragaria ananassa, can be white, yellow, taste like pineapples, or the stalks can even point the fruit towards the sun. The Institute of Food Research will study both wild and cultivated varieties, and is growing white and pale yellow strawberries as well as red.

In the future, the work could help the team to develop new varieties in which the anticarcinogenic compounds are enhanced.

One of the strawberry chemicals that may play a role against cancer is ellagic acid. Strawberries and raspberries are the main dietary source of ellagic acid in the west. Research by Dr Yannick Ford at Horticulture Research International [1] has highlighted the variation in ellagic acid content between varieties, with some white-fruited strawberries having particularly high levels.

Professor Mithen says, “The great thing about doing research on the health benefits of strawberries is that people enjoy eating them, as I’m sure we’ll see at Wimbledon next week!”

Other strawberry facts:
  • Professor Mithen’s research is part of a long term project, and one of many IFR projects analysing the health benefits of fruits and vegetables.

  • IFR scientists have also developed a rapid spectroscopy method for detecting adulteration of hand-pressed fresh strawberry and raspberry purees.

  • The modern strawberry, Fragaria ananassa, is a hybrid between Fragaria chiloenis from Chile and the North American Fragaria virginiana. The Chilean strawberry, transported to France in 1714, was mainly selected for its large size, while the North American for its hermaphroditism. Hermaphrodite flowers simplify crop production as they enable a crop to be cultivated from a single source.

  • The native British wild strawberry is a “diploid” – it has two sets of chromosomes, as in humans. The most commonly cultivated strawberry, Fragaria ananassa, is an octoploid with eight sets. This makes it a good candidate for demonstrating DNA extraction - with eight copies of each gene in the strawberry genome, strawberries are packed full of it.

  • The strawberry has a unique structure and is known as a “false” fruit. Unlike any other fruit, the seeds are the true fruits of the plant and are the black dots on the surface. The fleshy ‘berry’ to which they are attached is an enlarged, softened receptacle.

  • Both the strawberry and the raspberry belong to the rose family. The English word strawberry comes from the erratic straying habit of the plant, which it shares with many other members of the rose family such as the blackberry.

  • A variety developed in 1821 by English market gardener Michael Keens is the ancestor of virtually all modern varieties commercially cultivated today. Its size and flavour caused a sensation.

  • The Latin name fraga refers to the fruit’s fragrance.

Zoe Dunford | alfa
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>