Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Image-guided suite of the future brings precision to minimally invasive procedure


Minimally invasive treatment of disease, a revolutionary alternative to larger surgical incisions and longer recovery times, is undergoing its own transformation. Interventional radiologists are fusing imaging technologies with the accuracy of robots and automated instruments to help physicians target cancerous tumors and diseases with exquisite precision.

Three major categories of technology are at the forefront: robotics, global positioning systems (GPS) and next-generation image displays, such as imaging fusion, 3-D imaging and virtual reality devices known as "augmented reality."

"Many of these technologies have already been used in medicine, but their integration with imaging technology in the therapeutic realm is new," said Brad Wood, M.D., an interventional radiologist in the imaging sciences program at the National Institutes of Health (NIH) Clinical Center in Bethesda, Md.

Dr. Wood described the image-guided suite of the future today at a Radiological Society of North America media briefing on image-guided therapies.

In treating serious illnesses such as cancer, precision is key, according to Dr. Wood. A fraction of a millimeter can determine whether a tumor grows back or disappears. Despite forward strides, minimally invasive procedures still involve some estimating, even those performed by the most experienced clinicians, Dr. Wood said. Computed tomography (CT), positron emission tomography (PET) and magnetic resonance (MR) imaging offer detailed information, but physicians still count on their clinical experience to actually reach a target.

"The ’multi-modality’ suite of the future will eliminate much of the guesswork, reduce the risk of human error, and even minimize the impact of variations in physicians’ clinical abilities by standardizing many procedures," Dr. Wood said. "These advances will improve success rates and patient outcomes and help facilitate emerging new procedures."

Beyond its precision, the promise of the image-guided suite also lies in its cost-effectiveness and potential for use by community hospitals.

"The suite of the future will rely on relatively inexpensive, accessible modalities, such as CT and ultrasound," Dr. Wood said. "These technologies will allow physicians to treat more patients in their hospitals rather than having to send them to larger medical centers."

Robots assist in everything from heart surgery to hip replacement, and now at the NIH Clinical Center, interventional radiologists and biomedical engineers have developed one of the first systems to seamlessly integrate robotics with imaging technology.

On its first attempt, the robot prototype quickly made contact with a BB buried deep in a model of the human body and later scored more precisely than the physician in a study on needle placement accuracy for tumor destruction. The system is scheduled for use on patients at the NIH Clinical Center beginning in September, initially to help with needle positioning.

"Physicians will insert the needle themselves, at first, but the device will eliminate the guesswork of deciding where the needle should go," Dr. Wood said.

Ultimately, physicians will view a CT scan on a computer screen, click on a tumor and instruct the robot to calculate the ideal angle and depth of needle entry and to insert the needle. The physician will then deliver the appropriate dose of radiofrequency energy or heat to destroy the tumor.

GPS-guided therapy
The principles of global positioning systems (GPS) used by the military and auto industry, where information from satellites helps to locate, track and direct actions on the ground, is being adapted for minimally invasive interventional treatments.

CT and ultrasound scans provide the information to locate, track and direct a needle or guidewire bearing an electromagnetic sensor. The instruments are inside a catheter that has been inserted into the patient. The positioning system will map the ideal route to the target and provide real-time CT or ultrasound displays of the sensor’s position in relation to the target. The system’s precision and real-time feedback will reduce the risk of damage to surrounding tissue and critical structures. This mini-GPS will also be used to fuse regular x-rays to CT scans for improvements to image-guided therapies like angiography, stenting, angioplasty and embolization.

Eventually, physicians will also use this technology to deliver "designer nanoparticles," such as proteins, gene therapy, chemotherapy, antibodies and other cargo that have been specifically designed to target a patient’s tumor or a specific organ, and spare damage to non-cancerous tissue, according to Dr. Wood. Such molecular-based targeted therapeutics will rely upon advanced navigation systems like the mini-GPS for local or regional delivery to the targeted area. Image display
Augmented reality will expand what doctors are able to see with the naked eye. Augmented reality devices, such as headsets with special goggles similar to virtual reality devices, will superimpose three-dimensional, computer-generated images of anatomy onto the patient during therapy. Augmented reality technology will show physicians where a needle or other instrument needs to go and supply real-time information about the areas they have reached, or missed.

Additionally, image-fusion technology links PET and CT, two cornerstones of contemporary imaging, and brings PET into the treatment area for the first time. Combining the structural information of CT with the metabolic information of PET provides updated, fused images during treatment. The fused images take advantage of each imaging technique by highlighting treated versus untreated regions and areas of malignancy.

Another method highlighting treated and untreated areas during therapy will be computer-generated, 3-D CT images of organs or other anatomy. These images will be displayed on an orb or globe so the physician can look over and around them, instead of looking on an x-ray or wall, or rotating them on a screen with a mouse.

"Three-dimensional displays generated by CT scans to plan treatment are not new, but they have never been used to provide an ongoing source of information during these procedures," Dr. Wood said.

He said while some components of the image-guided suite of the future have already been used in treatment, including real-time imaging fusion, others have yet to be applied to patients, but hold enormous potential. "We are excited to see significant improvements as these methods come into clinical use," he said.

Maureen Morley | EurekAlert!
Further information:

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>