Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In vitro study suggests acrylamide causes DNA damage

18.06.2003


Acrylamide, a possible human carcinogen that has been found in a variety of fried and starch-based foods, appears to exert its mutagenicity (the capacity to induce mutations) by forming DNA adducts and introducing genetic mutations, according to a study in the June 18 issue of the Journal of the National Cancer Institute. DNA adducts can interfere with the DNA replication process and lead to mutations and, in theory, to tumor formation.



Exposure to acrylamide has been shown to increase the incidence of a variety of cancers in rats and mice. Although no one knows how this process works, one theory is that acrylamide triggers mutagenesis by damaging DNA.

Ahmad Besaratinia, Ph.D., and Gerd P. Pfeifer, Ph.D., of the Beckman Research Institute of the City of Hope National Medical Center in Duarte, Calif., tested this hypothesis in mammalian cells in vitro by exposing mouse embryonic fibroblasts (connective tissue cells) that carried an artificially inserted gene known as a transgene to either acrylamide or a control, double-distilled water.


Cells treated with acrylamide had more DNA adduct formation at specific spots along the transgene than control-treated cells. Treatment of the cells with low (micromolar) concentrations of acrylamide was associated with a twofold increase in the number of mutations in the transgene compared with the control-treated cells. This mutation rate was similar to that of cells treated with the known carcinogen BPDE at considerably lower concentrations. However, treatment of the cells with higher concentrations of acrylamide (e.g., in the millimolar range) resulted in a mutation rate similar to that of untreated cells, possibly because cells die when exposed to such high concentrations of acrylamide.

The researchers also found that acrylamide exposure resulted in the formation of a spectrum of genetic mutations that were different from those mutations formed spontaneously. They point out, however, that the sites of acrylamide-induced DNA adducts did not match the pattern of acrylamide-induced mutations, suggesting that not all DNA adducts formed by acrylamide resulted in mutations.

The researchers note that the role of acrylamide in embryonic mouse fibroblasts may differ from its role in a grown animal. They acknowledge that their study was conducted on a transgene rather than a native gene and say that their findings cannot yet be applied to humans.

In an accompanying editorial, Fredrik Granath, Ph.D., of the Karolinska Institute in Stockholm, Sweden, and Margareta Törnqvist, Ph.D., of Stockholm University in Sweden, point out that the estimated average concentration of acrylamide in the blood is approximately 6 nanomolar, a concentration that is five times lower than the lowest concentration used in this study. "Studying effects at such low exposures is very difficult even in in vitro studies," they say. Considering the low statistical power in epidemiologic studies, they say that "clarification and improvement of the risk assessment of acrylamide will be obtained primarily from experimental studies."

They say that the estimated individual cancer risk from dietary acrylamide is quite small and they would not recommend changing nutritional guidelines. "However, the situation for vulnerable groups, e.g., pregnant women and children, should always be carefully considered," they write.


Contact: Greg Hughes, City of Hope National Medical Center, 626-359-8111 Ext. 65263; fax: 626-301-8462, ghughes@coh.org.

Editorial: Margareta Törnqvist, Stockholm University 46-8163-769, 46-703-736771 (cell), margareta.tornqvist@mk.su.se or Fredrik Granath (after June 18), Karolinska Institute, 46-8517-79182, fredrik.granath@mep.ki.se.

Besaratinia A, Pfeifer GP. Weak yet distinct mutagenicity of acrylamide in mammalian cells. J Natl Cancer Inst 2003;95:889–96.

Editorial: Granath F, Törnqvist M. Who knows whether acrylamide in food is hazardous to humans? J Natl Cancer Inst 2003;95:842–3.

Note: The Journal of the National Cancer Institute is published by Oxford University Press and is not affiliated with the National Cancer Institute. Attribution to the Journal of the National Cancer Institute is requested in all news coverage.

Linda Wang | EurekAlert!
Further information:
http://jncicancerspectrum.oupjournals.org/

More articles from Health and Medicine:

nachricht Routing gene therapy directly into the brain
07.12.2017 | Boston Children's Hospital

nachricht New Hope for Cancer Therapies: Targeted Monitoring may help Improve Tumor Treatment
01.12.2017 | Berliner Institut für Gesundheitsforschung / Berlin Institute of Health (BIH)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>