Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In vitro study suggests acrylamide causes DNA damage

18.06.2003


Acrylamide, a possible human carcinogen that has been found in a variety of fried and starch-based foods, appears to exert its mutagenicity (the capacity to induce mutations) by forming DNA adducts and introducing genetic mutations, according to a study in the June 18 issue of the Journal of the National Cancer Institute. DNA adducts can interfere with the DNA replication process and lead to mutations and, in theory, to tumor formation.



Exposure to acrylamide has been shown to increase the incidence of a variety of cancers in rats and mice. Although no one knows how this process works, one theory is that acrylamide triggers mutagenesis by damaging DNA.

Ahmad Besaratinia, Ph.D., and Gerd P. Pfeifer, Ph.D., of the Beckman Research Institute of the City of Hope National Medical Center in Duarte, Calif., tested this hypothesis in mammalian cells in vitro by exposing mouse embryonic fibroblasts (connective tissue cells) that carried an artificially inserted gene known as a transgene to either acrylamide or a control, double-distilled water.


Cells treated with acrylamide had more DNA adduct formation at specific spots along the transgene than control-treated cells. Treatment of the cells with low (micromolar) concentrations of acrylamide was associated with a twofold increase in the number of mutations in the transgene compared with the control-treated cells. This mutation rate was similar to that of cells treated with the known carcinogen BPDE at considerably lower concentrations. However, treatment of the cells with higher concentrations of acrylamide (e.g., in the millimolar range) resulted in a mutation rate similar to that of untreated cells, possibly because cells die when exposed to such high concentrations of acrylamide.

The researchers also found that acrylamide exposure resulted in the formation of a spectrum of genetic mutations that were different from those mutations formed spontaneously. They point out, however, that the sites of acrylamide-induced DNA adducts did not match the pattern of acrylamide-induced mutations, suggesting that not all DNA adducts formed by acrylamide resulted in mutations.

The researchers note that the role of acrylamide in embryonic mouse fibroblasts may differ from its role in a grown animal. They acknowledge that their study was conducted on a transgene rather than a native gene and say that their findings cannot yet be applied to humans.

In an accompanying editorial, Fredrik Granath, Ph.D., of the Karolinska Institute in Stockholm, Sweden, and Margareta Törnqvist, Ph.D., of Stockholm University in Sweden, point out that the estimated average concentration of acrylamide in the blood is approximately 6 nanomolar, a concentration that is five times lower than the lowest concentration used in this study. "Studying effects at such low exposures is very difficult even in in vitro studies," they say. Considering the low statistical power in epidemiologic studies, they say that "clarification and improvement of the risk assessment of acrylamide will be obtained primarily from experimental studies."

They say that the estimated individual cancer risk from dietary acrylamide is quite small and they would not recommend changing nutritional guidelines. "However, the situation for vulnerable groups, e.g., pregnant women and children, should always be carefully considered," they write.


Contact: Greg Hughes, City of Hope National Medical Center, 626-359-8111 Ext. 65263; fax: 626-301-8462, ghughes@coh.org.

Editorial: Margareta Törnqvist, Stockholm University 46-8163-769, 46-703-736771 (cell), margareta.tornqvist@mk.su.se or Fredrik Granath (after June 18), Karolinska Institute, 46-8517-79182, fredrik.granath@mep.ki.se.

Besaratinia A, Pfeifer GP. Weak yet distinct mutagenicity of acrylamide in mammalian cells. J Natl Cancer Inst 2003;95:889–96.

Editorial: Granath F, Törnqvist M. Who knows whether acrylamide in food is hazardous to humans? J Natl Cancer Inst 2003;95:842–3.

Note: The Journal of the National Cancer Institute is published by Oxford University Press and is not affiliated with the National Cancer Institute. Attribution to the Journal of the National Cancer Institute is requested in all news coverage.

Linda Wang | EurekAlert!
Further information:
http://jncicancerspectrum.oupjournals.org/

More articles from Health and Medicine:

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Cloud Formation: How Feldspar Acts as Ice Nucleus

09.12.2016 | Life Sciences

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>