Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mayo Clinic researchers discover new immune system molecule that can help or harm health

18.06.2003


Mayo Clinic researchers have identified a new member of the important B7 family of immune system "co-stimulators." Co-stimulators are molecules that are capable of turning the immune system on or off -- and in the process, profoundly affecting human health.



Mayo Clinic researchers named this newest molecule B7-H4. It inhibits the action of T cells, the immune system warriors whose basic job is to attack invaders. Turning off T cells helps transplant patients accept foreign organs. But turning off T cells harms cancer patients -- their tumors continue to grow without defensive attacks by T cells. The Mayo Clinic report appears in the June 17 issue of Immunity.

These findings may help researchers learn how to manipulate immune system co-stimulators to serve such therapeutic objectives as:


1) stopping the body from attacking itself in autoimmune diseases;
2) thwarting rejection of transplanted organs;
3) guiding the body to attack a cancer cell.

Significance of the Mayo Clinic Investigation

B7-H4 is the fourth in a line of so-called "co-stimulation" molecules discovered over five years of research led by Lieping Chen, M.D., Ph.D., professor of Immunology at Mayo Medical School. The first in the line, B7-H1, was discovered in 1999 by Dr. Chen and colleagues. And, as in so many families, the members of this molecule family bear intriguing differences. Chief among these differences: Not all B7 members serve the body the same way -- some boost the immune system, some blunt its effect and some do both, at different times, depending on the partner to which they bind and the pathways for action they create.

Says Dr. Chen, "The immune system is a double-edged sword. It can help and it can damage. It has a positive and a negative capacity -- and understanding and controlling these is the key issue for manipulation of diseases with new treatments. This molecule is very important for doing that work because it is a very potent negative regulation component of the immune system."

The Investigation

To examine the B7 group further, Mayo Clinic researchers analyzed genes in a database composed of members that were likely to be part of the B7 superfamily. Then they cloned the B7-H4 molecule, modeled it in 3-D on a computer and found the functional part of interest. Next, they engineered the molecule and tested its effects in T cells, both in cell culture and in live mice. They did this because Dr. Chen’s laboratory is probing the molecular basis of cellular communication to discover how different components of the immune system talk to each other on the cell surface. The basic exchange that occurs on the cell surface involves two parts: a receptor and its partner, which is called a "ligand." How these two parts interact determines the action the immune system takes.

Mayo Clinic’s Findings

B7-H4 is a very powerful "negative regulator," highly efficient at turning off T cells. This is important because in certain diseases, such as cancers, this regulator may be overly active. In healthy cells, there are no negative regulators. The implication: One reason healthy cells are healthy is that they don’t have B7-H4 shutting down the T cells that police the body for invaders; their T cells are working and are protecting them. "In a tumor, you may have excess B7-H4 turning off T cells all the time. In a normal healthy body, the negative regulators like B7-H4 have to be turned on," says Dr. Chen. The mechanism by which B7-H4 inhibits T cells appears to be one of arresting cell division and the cell-proliferation cycle.

At a Glance Summary
  • Some immune system molecules can go both ways: they can have the positive effect of boosting the immune system, or the negative effect of shutting it down -- or do both at different times -- depending on the nature of the partners to which they bind.
  • B7-H4, the subject of Mayo’s current investigation, powerfully shuts down the immune system response of T cells.
  • By discovering which molecules -- and which partners, or ligands -- are involved in turning the immune system on or off, Dr. Chen is confident Mayo Clinic research will help scientists devise new treatment strategies. "This new finding about B7-H4 adds excitement to the possibility of therapeutic manipulation of the immune system," he says.

Mary Lawson | EurekAlert!
Further information:
http://www.mayo.edu/

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>