Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mayo Clinic researchers discover new immune system molecule that can help or harm health

18.06.2003


Mayo Clinic researchers have identified a new member of the important B7 family of immune system "co-stimulators." Co-stimulators are molecules that are capable of turning the immune system on or off -- and in the process, profoundly affecting human health.



Mayo Clinic researchers named this newest molecule B7-H4. It inhibits the action of T cells, the immune system warriors whose basic job is to attack invaders. Turning off T cells helps transplant patients accept foreign organs. But turning off T cells harms cancer patients -- their tumors continue to grow without defensive attacks by T cells. The Mayo Clinic report appears in the June 17 issue of Immunity.

These findings may help researchers learn how to manipulate immune system co-stimulators to serve such therapeutic objectives as:


1) stopping the body from attacking itself in autoimmune diseases;
2) thwarting rejection of transplanted organs;
3) guiding the body to attack a cancer cell.

Significance of the Mayo Clinic Investigation

B7-H4 is the fourth in a line of so-called "co-stimulation" molecules discovered over five years of research led by Lieping Chen, M.D., Ph.D., professor of Immunology at Mayo Medical School. The first in the line, B7-H1, was discovered in 1999 by Dr. Chen and colleagues. And, as in so many families, the members of this molecule family bear intriguing differences. Chief among these differences: Not all B7 members serve the body the same way -- some boost the immune system, some blunt its effect and some do both, at different times, depending on the partner to which they bind and the pathways for action they create.

Says Dr. Chen, "The immune system is a double-edged sword. It can help and it can damage. It has a positive and a negative capacity -- and understanding and controlling these is the key issue for manipulation of diseases with new treatments. This molecule is very important for doing that work because it is a very potent negative regulation component of the immune system."

The Investigation

To examine the B7 group further, Mayo Clinic researchers analyzed genes in a database composed of members that were likely to be part of the B7 superfamily. Then they cloned the B7-H4 molecule, modeled it in 3-D on a computer and found the functional part of interest. Next, they engineered the molecule and tested its effects in T cells, both in cell culture and in live mice. They did this because Dr. Chen’s laboratory is probing the molecular basis of cellular communication to discover how different components of the immune system talk to each other on the cell surface. The basic exchange that occurs on the cell surface involves two parts: a receptor and its partner, which is called a "ligand." How these two parts interact determines the action the immune system takes.

Mayo Clinic’s Findings

B7-H4 is a very powerful "negative regulator," highly efficient at turning off T cells. This is important because in certain diseases, such as cancers, this regulator may be overly active. In healthy cells, there are no negative regulators. The implication: One reason healthy cells are healthy is that they don’t have B7-H4 shutting down the T cells that police the body for invaders; their T cells are working and are protecting them. "In a tumor, you may have excess B7-H4 turning off T cells all the time. In a normal healthy body, the negative regulators like B7-H4 have to be turned on," says Dr. Chen. The mechanism by which B7-H4 inhibits T cells appears to be one of arresting cell division and the cell-proliferation cycle.

At a Glance Summary
  • Some immune system molecules can go both ways: they can have the positive effect of boosting the immune system, or the negative effect of shutting it down -- or do both at different times -- depending on the nature of the partners to which they bind.
  • B7-H4, the subject of Mayo’s current investigation, powerfully shuts down the immune system response of T cells.
  • By discovering which molecules -- and which partners, or ligands -- are involved in turning the immune system on or off, Dr. Chen is confident Mayo Clinic research will help scientists devise new treatment strategies. "This new finding about B7-H4 adds excitement to the possibility of therapeutic manipulation of the immune system," he says.

Mary Lawson | EurekAlert!
Further information:
http://www.mayo.edu/

More articles from Health and Medicine:

nachricht 'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers
16.02.2018 | National University of Science and Technology MISIS

nachricht New process allows tailor-made malaria research
16.02.2018 | Eberhard Karls Universität Tübingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>