Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mayo Clinic researchers discover new immune system molecule that can help or harm health

18.06.2003


Mayo Clinic researchers have identified a new member of the important B7 family of immune system "co-stimulators." Co-stimulators are molecules that are capable of turning the immune system on or off -- and in the process, profoundly affecting human health.



Mayo Clinic researchers named this newest molecule B7-H4. It inhibits the action of T cells, the immune system warriors whose basic job is to attack invaders. Turning off T cells helps transplant patients accept foreign organs. But turning off T cells harms cancer patients -- their tumors continue to grow without defensive attacks by T cells. The Mayo Clinic report appears in the June 17 issue of Immunity.

These findings may help researchers learn how to manipulate immune system co-stimulators to serve such therapeutic objectives as:


1) stopping the body from attacking itself in autoimmune diseases;
2) thwarting rejection of transplanted organs;
3) guiding the body to attack a cancer cell.

Significance of the Mayo Clinic Investigation

B7-H4 is the fourth in a line of so-called "co-stimulation" molecules discovered over five years of research led by Lieping Chen, M.D., Ph.D., professor of Immunology at Mayo Medical School. The first in the line, B7-H1, was discovered in 1999 by Dr. Chen and colleagues. And, as in so many families, the members of this molecule family bear intriguing differences. Chief among these differences: Not all B7 members serve the body the same way -- some boost the immune system, some blunt its effect and some do both, at different times, depending on the partner to which they bind and the pathways for action they create.

Says Dr. Chen, "The immune system is a double-edged sword. It can help and it can damage. It has a positive and a negative capacity -- and understanding and controlling these is the key issue for manipulation of diseases with new treatments. This molecule is very important for doing that work because it is a very potent negative regulation component of the immune system."

The Investigation

To examine the B7 group further, Mayo Clinic researchers analyzed genes in a database composed of members that were likely to be part of the B7 superfamily. Then they cloned the B7-H4 molecule, modeled it in 3-D on a computer and found the functional part of interest. Next, they engineered the molecule and tested its effects in T cells, both in cell culture and in live mice. They did this because Dr. Chen’s laboratory is probing the molecular basis of cellular communication to discover how different components of the immune system talk to each other on the cell surface. The basic exchange that occurs on the cell surface involves two parts: a receptor and its partner, which is called a "ligand." How these two parts interact determines the action the immune system takes.

Mayo Clinic’s Findings

B7-H4 is a very powerful "negative regulator," highly efficient at turning off T cells. This is important because in certain diseases, such as cancers, this regulator may be overly active. In healthy cells, there are no negative regulators. The implication: One reason healthy cells are healthy is that they don’t have B7-H4 shutting down the T cells that police the body for invaders; their T cells are working and are protecting them. "In a tumor, you may have excess B7-H4 turning off T cells all the time. In a normal healthy body, the negative regulators like B7-H4 have to be turned on," says Dr. Chen. The mechanism by which B7-H4 inhibits T cells appears to be one of arresting cell division and the cell-proliferation cycle.

At a Glance Summary
  • Some immune system molecules can go both ways: they can have the positive effect of boosting the immune system, or the negative effect of shutting it down -- or do both at different times -- depending on the nature of the partners to which they bind.
  • B7-H4, the subject of Mayo’s current investigation, powerfully shuts down the immune system response of T cells.
  • By discovering which molecules -- and which partners, or ligands -- are involved in turning the immune system on or off, Dr. Chen is confident Mayo Clinic research will help scientists devise new treatment strategies. "This new finding about B7-H4 adds excitement to the possibility of therapeutic manipulation of the immune system," he says.

Mary Lawson | EurekAlert!
Further information:
http://www.mayo.edu/

More articles from Health and Medicine:

nachricht Custom-tailored strategy against glioblastomas
26.09.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New leukemia treatment offers hope
23.09.2016 | King Abdullah University of Science and Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

Heavy construction machinery is the focus of Oak Ridge National Laboratory’s latest advance in additive manufacturing research. With industry partners and university students, ORNL researchers are designing and producing the world’s first 3D printed excavator, a prototype that will leverage large-scale AM technologies and explore the feasibility of printing with metal alloys.

Increasing the size and speed of metal-based 3D printing techniques, using low-cost alloys like steel and aluminum, could create new industrial applications...

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Paper – Panacea Green Infrastructure?

30.09.2016 | Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

 
Latest News

First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

30.09.2016 | Materials Sciences

New Technique for Finding Weakness in Earth’s Crust

30.09.2016 | Earth Sciences

Cells migrate collectively by intermittent bursts of activity

30.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>