Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Injection prevents blinding blood vessel growth in mice

18.06.2003


Researchers at Johns Hopkins’ Wilmer Eye Institute and Regeneron Pharmaceuticals have identified an experimental medicine that stops the blinding blood vessel growth associated with diabetic eye diseases and possibly macular degeneration in laboratory mice.



By injecting a fused protein called VEGF-TRAP (R1R2) into the eyes or bloodstreams of mice, scientists halted new blood vessel growth in the rodents’ eyes and stopped existing blood vessels from leaking. Study results were published recently in the Journal of Cellular Physiology.

VEGF-TRAP was designed to antagonize vascular endothelial growth factor (VEGF), a substance naturally produced in the body that promotes blood vessel formation. Released by the retina (light-sensitive tissue in back of the eye) when normal blood vessels are damaged by disease, VEGF turns on its receptor, igniting a chain reaction that culminates in new blood vessel growth. However, the backup blood vessels are faulty; they leak, bleed and encourage scar tissue that detaches the retina, resulting in severe loss of vision. Such growth is the hallmark of diabetic retinopathy, the leading cause of blindness among young people in developed countries. It’s also believed that VEGF contributes to abnormal blood vessel growth from the choroid layer of the eye into the retina, similar to what occurs during the wet or neovascular form of age-related macular degeneration.


VEGF-TRAP contains a portion of two receptors for VEGF, which, hooked together, form a sponge that soaks up VEGF before it causes additional damage. Scientists tested VEGF-TRAP in two groups of laboratory mice. In the first group, which had a rupture of Bruch’s membrane (the layer between the retina and the choroid), they injected VEGF-TRAP directly into the rodents’ eyes. In a second group of mice genetically engineered to express VEGF in the retina, they gave the mice injections of VEGF-TRAP under the skin.

Mice treated with either system-wide or local injections of VEGF-TRAP had significantly less new blood vessel growth. Also, VEGF-TRAP blocked leaking of blood vessels usually caused by VEGF, the major problem in patients with macular edema or swelling. This indicates that unlike some large molecules now being tested in patients, VEGF-TRAP does not have to be injected directly into the eye. Injections can be given under the skin, and VEGF-TRAP can, through circulation, exert a strong therapeutic effect in the eye against abnormal blood vessel formation. No side effects were identified.

Peter A. Campochiaro, M.D., senior study author and professor of ophthalmology and neuroscience, says if clinical studies demonstrate similar properties, he hopes that eventually patients could self-administer injections at home similar to insulin shots taken by diabetics. Unlike other treatments for macular degeneration and diabetic retinopathy, which require treatment of one eye at a time, the shot could take care of both eyes at once.

"Our data suggest that VEGF-TRAP deserves consideration as a potential treatment for two complications of diabetic retinopathy -- new blood vessel growth and macular edema," Campochiaro says. "It had long-lasting effects and did not cause complications."

Circulating levels of VEGF-TRAP or other anti-VEGF medications could have many additional health benefits, Campochiaro says, as abnormal blood vessel growth has been implicated in tumor growth, hardening of the arteries and arthritis. A clinical trial sponsored by Regeneron Pharmaceuticals is being planned to assess the medication’s effects in people with diabetic retinopathy and macular edema, and in patients with wet age-related macular degeneration.

The study was supported by grants from the Public Health Service, the Foundation Fighting Blindness, Research to Prevent Blindness and Dr. and Mrs. William Lake. Coauthors were Yumiko Saishin, Kyoichi Takahashi and Raquel Lima E. Silva of Hopkins, and Donna Hylton, John S. Rudge and Stanley J. Wiegand of Regeneron, Tarrytown, N.Y.


###
Saishin, Yoshitsugu, et al, "VEGF-TRAP Suppresses Choroidal Neovascularization and VEGF-Induced Breakdown of the Blood-Retinal Barrier," Journal of Cellular Physiology, May 2003, Vol. 195, pages 241-248.

Karen Blum | EurekAlert!
Further information:
http://www.wilmer.jhu.edu
http://www.interscience.wiley.com/jpages/0021-9541
http://www.hopkinsmedicine.org

More articles from Health and Medicine:

nachricht 'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers
16.02.2018 | National University of Science and Technology MISIS

nachricht New process allows tailor-made malaria research
16.02.2018 | Eberhard Karls Universität Tübingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>