Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hebrew University researcher studies ’reorganization’ of brain in blind people

17.06.2003


Studies indicate that congenitally blind (blind from birth) people have superior verbal memory abilities than the sighted. Why and what is the significance of this?



A new study by a team of researchers headed by Dr. Ehud Zohary of the Department of Neurobiology at the Alexander Silberman Institute of Life Sciences at the Hebrew University of Jerusalem provides a better understanding of this phenomenon through closer examination of how and where information is processed in the brains of blind people. An article on his work appears in the current online edition of Nature Neuroscience magazine. It is believed that this work could open a window towards future enhancement of the quality of life for blind people.

Humans, like other primates, rely primarily on vision to direct their behavior. The areas devoted to vision constitute some 25 percent of the human brain. The prevailing thought up to now was that the loss of vision due to blindness renders these regions useless. New evidence, however, shows that the "unemployed" occipital cortex in the brain -- which usually functions in connection with vision -- is utilized in the blind for other purposes.


For example, neuroimaging techniques have shown that the occipital cortex of congenitally blind people is active during Braille reading, indicating that this so-called "sight" region of the brain becomes reoriented for information processing connected with the sense of touch.

Yet, Braille reading involves more than just fine tactile judgments, since reading involves language and memory processes as well. Using functioning imaging (fMRI) in the congenitally blind, Zohary, together with his doctoral students Amir Amedi and Noa Raz, found that extensive regions in the occipital cortex are activated not only during Braille reading, but also during performances of verbal memory tasks, such as recalling a list of abstract words.

One of these activated regions is the primary visual cortex, or V1, which is the central gateway for visual information processing in the normal human brain. In contrast, no such verbal memory-related activation was found in V1 of a sighted control group. This V1 activation, unique to the blind, was accompanied by superior verbal memory skills for the blind as a group, compared to their sighted peers. The test shows that the greater the occipital activation, the higher the scores in the verbal memory tests.

Zohary’s research leads him to conclude that in congenital blindness, the visual cortex undergoes a dramatic reorganization and is recruited for high-level cognitive functions. There is evidence that this "conversion" is much more limited in people blinded at later stages in life.

Zohary says that his study opens a window for better understanding of cortical plasticity in brain systems, a crucial step in seeking to improve treatment for neurodegenerative diseases. Once researchers know more about how the cortical reorganization takes place -- and how to advance this process by proper training -- it may be possible to give blind people cognitive advantages that will serve them throughout life.

It is important to note, however, that due to the limitations of the fMRI technique, the actual neuronal mechanisms underlying memory cannot be addressed using neuroimaging, and therefore further complementary studies will be necessary, involving observation of laboratory animals performing similar behavioral tasks.

Jerry Barach | Hebrew University
Further information:
http://www.huji.ac.il/

More articles from Health and Medicine:

nachricht Scientists track ovarian cancers to site of origin: Fallopian tubes
23.10.2017 | Johns Hopkins Medicine

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Taming 'wild' electrons in graphene

23.10.2017 | Physics and Astronomy

Mountain glaciers shrinking across the West

23.10.2017 | Earth Sciences

Scientists track ovarian cancers to site of origin: Fallopian tubes

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>