Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hebrew University researcher studies ’reorganization’ of brain in blind people

17.06.2003


Studies indicate that congenitally blind (blind from birth) people have superior verbal memory abilities than the sighted. Why and what is the significance of this?



A new study by a team of researchers headed by Dr. Ehud Zohary of the Department of Neurobiology at the Alexander Silberman Institute of Life Sciences at the Hebrew University of Jerusalem provides a better understanding of this phenomenon through closer examination of how and where information is processed in the brains of blind people. An article on his work appears in the current online edition of Nature Neuroscience magazine. It is believed that this work could open a window towards future enhancement of the quality of life for blind people.

Humans, like other primates, rely primarily on vision to direct their behavior. The areas devoted to vision constitute some 25 percent of the human brain. The prevailing thought up to now was that the loss of vision due to blindness renders these regions useless. New evidence, however, shows that the "unemployed" occipital cortex in the brain -- which usually functions in connection with vision -- is utilized in the blind for other purposes.


For example, neuroimaging techniques have shown that the occipital cortex of congenitally blind people is active during Braille reading, indicating that this so-called "sight" region of the brain becomes reoriented for information processing connected with the sense of touch.

Yet, Braille reading involves more than just fine tactile judgments, since reading involves language and memory processes as well. Using functioning imaging (fMRI) in the congenitally blind, Zohary, together with his doctoral students Amir Amedi and Noa Raz, found that extensive regions in the occipital cortex are activated not only during Braille reading, but also during performances of verbal memory tasks, such as recalling a list of abstract words.

One of these activated regions is the primary visual cortex, or V1, which is the central gateway for visual information processing in the normal human brain. In contrast, no such verbal memory-related activation was found in V1 of a sighted control group. This V1 activation, unique to the blind, was accompanied by superior verbal memory skills for the blind as a group, compared to their sighted peers. The test shows that the greater the occipital activation, the higher the scores in the verbal memory tests.

Zohary’s research leads him to conclude that in congenital blindness, the visual cortex undergoes a dramatic reorganization and is recruited for high-level cognitive functions. There is evidence that this "conversion" is much more limited in people blinded at later stages in life.

Zohary says that his study opens a window for better understanding of cortical plasticity in brain systems, a crucial step in seeking to improve treatment for neurodegenerative diseases. Once researchers know more about how the cortical reorganization takes place -- and how to advance this process by proper training -- it may be possible to give blind people cognitive advantages that will serve them throughout life.

It is important to note, however, that due to the limitations of the fMRI technique, the actual neuronal mechanisms underlying memory cannot be addressed using neuroimaging, and therefore further complementary studies will be necessary, involving observation of laboratory animals performing similar behavioral tasks.

Jerry Barach | Hebrew University
Further information:
http://www.huji.ac.il/

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Molecular libraries for organic light-emitting diodes

24.04.2017 | Life Sciences

Research sheds new light on forces that threaten sensitive coastlines

24.04.2017 | Earth Sciences

Making lightweight construction suitable for series production

24.04.2017 | Machine Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>