Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Transplantation tolerance: Of mice and men

17.06.2003


Little is known about the effect of an individual’s immune history on their response to a donated tissue transplant. An important study by researchers at Emory University in Atlanta, Georgia, reveals that individuals harboring virally-induced memory T cells that are cross reactive with donor antigens are resistant to conventional strategies designed to induce transplant tolerance.



Enormous progress has been achieved in the field of transplantation during the past 3 decades, due in large part to the availability of effective immunosuppressive drugs. Such drugs are designed to sufficiently suppress the recipient immune response to the donor tissue without compromising the ability to fight infection. In the 50 years since the first description of tolerance to transplanted tissue in mice, researchers have strived to induce tolerance in human transplant recipients. So why the discrepancy?

In the June 16 issue of the Journal of Clinical Investigation, Christian Larsen and his colleagues demonstrated that a critical distinction between pathogen-free mice used in transplant research and nonhuman primates or human patients is their acquired immune history. The authors demonstrate that a specific threshold of memory cells is necessary to promote rejection and CD8+ central memory cells are principally responsible for mediating rejection. The data reveal that the transplantation field may have underappreciated the barrier that memory to previous viral infections in the recipient serves in the induction of tolerance.


"This study makes a strong argument for the importance of previous antigen exposure in determining the outcome of protocols designed to induce tolerance" says Harvard surgeon David Sachs, Director of the Transplantation Biology Research Center at Massachusetts General Hospital. "The data clearly support the practice of testing for potential cellular as well as humoral sensitization against the donor prior to carrying out such protocols clinically, even in cases for which there has been no known exposure to the donor antigens". Dr. Sachs continues to explore the more general question of why it is more difficult to induce tolerance in large versus small animals in his accompanying commentary. We should expect that differences to prior antigen exposure will be only one of the potential reasons for marked differences that are encountered between mice and primates in attempts to induce tolerance to transplanted tissue. Elucidating the mechanisms of these relationships can only increase the chances of achieving complete tolerance to tissue transplantation in humans.

AUTHOR CONTACT:
Christian P. Larsen
Emory University, School of Medicine, Atlanta, Georgia, USA.
Phone: 404-727-8466
Fax: 404-727-3660
Email: clarsen@emory.org

View the PDF of this article at: https://www.the-jci.org/press/17477.pdf

ACCOMPANYING COMMENTARY:
Tolerance: Of mice and men
AUTHOR CONTACT:
David H. Sachs
Massachusetts General Hospital, Boston, Massachusetts, USA.
Phone: 617-726-4065
Fax: 617-726-4067
Email: sachs@helix.mgh.harvard.edu

View the PDF of this commentary at: https://www.the-jci.org/press/18926.pdf

Brooke Grindlinger | EurekAlert!
Further information:
http://www.jci.org/
http://www.the-jci.org/press/17477.pdf
http://www.the-jci.org/press/18926.pdf

More articles from Health and Medicine:

nachricht How prenatal maternal infections may affect genetic factors in Autism spectrum disorder
22.03.2017 | University of California - San Diego

nachricht Camouflage apples
22.03.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>