Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Transplantation tolerance: Of mice and men

17.06.2003


Little is known about the effect of an individual’s immune history on their response to a donated tissue transplant. An important study by researchers at Emory University in Atlanta, Georgia, reveals that individuals harboring virally-induced memory T cells that are cross reactive with donor antigens are resistant to conventional strategies designed to induce transplant tolerance.



Enormous progress has been achieved in the field of transplantation during the past 3 decades, due in large part to the availability of effective immunosuppressive drugs. Such drugs are designed to sufficiently suppress the recipient immune response to the donor tissue without compromising the ability to fight infection. In the 50 years since the first description of tolerance to transplanted tissue in mice, researchers have strived to induce tolerance in human transplant recipients. So why the discrepancy?

In the June 16 issue of the Journal of Clinical Investigation, Christian Larsen and his colleagues demonstrated that a critical distinction between pathogen-free mice used in transplant research and nonhuman primates or human patients is their acquired immune history. The authors demonstrate that a specific threshold of memory cells is necessary to promote rejection and CD8+ central memory cells are principally responsible for mediating rejection. The data reveal that the transplantation field may have underappreciated the barrier that memory to previous viral infections in the recipient serves in the induction of tolerance.


"This study makes a strong argument for the importance of previous antigen exposure in determining the outcome of protocols designed to induce tolerance" says Harvard surgeon David Sachs, Director of the Transplantation Biology Research Center at Massachusetts General Hospital. "The data clearly support the practice of testing for potential cellular as well as humoral sensitization against the donor prior to carrying out such protocols clinically, even in cases for which there has been no known exposure to the donor antigens". Dr. Sachs continues to explore the more general question of why it is more difficult to induce tolerance in large versus small animals in his accompanying commentary. We should expect that differences to prior antigen exposure will be only one of the potential reasons for marked differences that are encountered between mice and primates in attempts to induce tolerance to transplanted tissue. Elucidating the mechanisms of these relationships can only increase the chances of achieving complete tolerance to tissue transplantation in humans.

AUTHOR CONTACT:
Christian P. Larsen
Emory University, School of Medicine, Atlanta, Georgia, USA.
Phone: 404-727-8466
Fax: 404-727-3660
Email: clarsen@emory.org

View the PDF of this article at: https://www.the-jci.org/press/17477.pdf

ACCOMPANYING COMMENTARY:
Tolerance: Of mice and men
AUTHOR CONTACT:
David H. Sachs
Massachusetts General Hospital, Boston, Massachusetts, USA.
Phone: 617-726-4065
Fax: 617-726-4067
Email: sachs@helix.mgh.harvard.edu

View the PDF of this commentary at: https://www.the-jci.org/press/18926.pdf

Brooke Grindlinger | EurekAlert!
Further information:
http://www.jci.org/
http://www.the-jci.org/press/17477.pdf
http://www.the-jci.org/press/18926.pdf

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>