Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Transplantation tolerance: Of mice and men

17.06.2003


Little is known about the effect of an individual’s immune history on their response to a donated tissue transplant. An important study by researchers at Emory University in Atlanta, Georgia, reveals that individuals harboring virally-induced memory T cells that are cross reactive with donor antigens are resistant to conventional strategies designed to induce transplant tolerance.



Enormous progress has been achieved in the field of transplantation during the past 3 decades, due in large part to the availability of effective immunosuppressive drugs. Such drugs are designed to sufficiently suppress the recipient immune response to the donor tissue without compromising the ability to fight infection. In the 50 years since the first description of tolerance to transplanted tissue in mice, researchers have strived to induce tolerance in human transplant recipients. So why the discrepancy?

In the June 16 issue of the Journal of Clinical Investigation, Christian Larsen and his colleagues demonstrated that a critical distinction between pathogen-free mice used in transplant research and nonhuman primates or human patients is their acquired immune history. The authors demonstrate that a specific threshold of memory cells is necessary to promote rejection and CD8+ central memory cells are principally responsible for mediating rejection. The data reveal that the transplantation field may have underappreciated the barrier that memory to previous viral infections in the recipient serves in the induction of tolerance.


"This study makes a strong argument for the importance of previous antigen exposure in determining the outcome of protocols designed to induce tolerance" says Harvard surgeon David Sachs, Director of the Transplantation Biology Research Center at Massachusetts General Hospital. "The data clearly support the practice of testing for potential cellular as well as humoral sensitization against the donor prior to carrying out such protocols clinically, even in cases for which there has been no known exposure to the donor antigens". Dr. Sachs continues to explore the more general question of why it is more difficult to induce tolerance in large versus small animals in his accompanying commentary. We should expect that differences to prior antigen exposure will be only one of the potential reasons for marked differences that are encountered between mice and primates in attempts to induce tolerance to transplanted tissue. Elucidating the mechanisms of these relationships can only increase the chances of achieving complete tolerance to tissue transplantation in humans.

AUTHOR CONTACT:
Christian P. Larsen
Emory University, School of Medicine, Atlanta, Georgia, USA.
Phone: 404-727-8466
Fax: 404-727-3660
Email: clarsen@emory.org

View the PDF of this article at: https://www.the-jci.org/press/17477.pdf

ACCOMPANYING COMMENTARY:
Tolerance: Of mice and men
AUTHOR CONTACT:
David H. Sachs
Massachusetts General Hospital, Boston, Massachusetts, USA.
Phone: 617-726-4065
Fax: 617-726-4067
Email: sachs@helix.mgh.harvard.edu

View the PDF of this commentary at: https://www.the-jci.org/press/18926.pdf

Brooke Grindlinger | EurekAlert!
Further information:
http://www.jci.org/
http://www.the-jci.org/press/17477.pdf
http://www.the-jci.org/press/18926.pdf

More articles from Health and Medicine:

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

nachricht Flexible sensors can detect movement in GI tract
11.10.2017 | Massachusetts Institute of Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Plant escape from waterlogging

17.10.2017 | Life Sciences

Study suggests oysters offer hot spot for reducing nutrient pollution

17.10.2017 | Life Sciences

Breaking: the first light from two neutron stars merging

17.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>