Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Transplantation tolerance: Of mice and men

17.06.2003


Little is known about the effect of an individual’s immune history on their response to a donated tissue transplant. An important study by researchers at Emory University in Atlanta, Georgia, reveals that individuals harboring virally-induced memory T cells that are cross reactive with donor antigens are resistant to conventional strategies designed to induce transplant tolerance.



Enormous progress has been achieved in the field of transplantation during the past 3 decades, due in large part to the availability of effective immunosuppressive drugs. Such drugs are designed to sufficiently suppress the recipient immune response to the donor tissue without compromising the ability to fight infection. In the 50 years since the first description of tolerance to transplanted tissue in mice, researchers have strived to induce tolerance in human transplant recipients. So why the discrepancy?

In the June 16 issue of the Journal of Clinical Investigation, Christian Larsen and his colleagues demonstrated that a critical distinction between pathogen-free mice used in transplant research and nonhuman primates or human patients is their acquired immune history. The authors demonstrate that a specific threshold of memory cells is necessary to promote rejection and CD8+ central memory cells are principally responsible for mediating rejection. The data reveal that the transplantation field may have underappreciated the barrier that memory to previous viral infections in the recipient serves in the induction of tolerance.


"This study makes a strong argument for the importance of previous antigen exposure in determining the outcome of protocols designed to induce tolerance" says Harvard surgeon David Sachs, Director of the Transplantation Biology Research Center at Massachusetts General Hospital. "The data clearly support the practice of testing for potential cellular as well as humoral sensitization against the donor prior to carrying out such protocols clinically, even in cases for which there has been no known exposure to the donor antigens". Dr. Sachs continues to explore the more general question of why it is more difficult to induce tolerance in large versus small animals in his accompanying commentary. We should expect that differences to prior antigen exposure will be only one of the potential reasons for marked differences that are encountered between mice and primates in attempts to induce tolerance to transplanted tissue. Elucidating the mechanisms of these relationships can only increase the chances of achieving complete tolerance to tissue transplantation in humans.

AUTHOR CONTACT:
Christian P. Larsen
Emory University, School of Medicine, Atlanta, Georgia, USA.
Phone: 404-727-8466
Fax: 404-727-3660
Email: clarsen@emory.org

View the PDF of this article at: https://www.the-jci.org/press/17477.pdf

ACCOMPANYING COMMENTARY:
Tolerance: Of mice and men
AUTHOR CONTACT:
David H. Sachs
Massachusetts General Hospital, Boston, Massachusetts, USA.
Phone: 617-726-4065
Fax: 617-726-4067
Email: sachs@helix.mgh.harvard.edu

View the PDF of this commentary at: https://www.the-jci.org/press/18926.pdf

Brooke Grindlinger | EurekAlert!
Further information:
http://www.jci.org/
http://www.the-jci.org/press/17477.pdf
http://www.the-jci.org/press/18926.pdf

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>