Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A tiny pump promises big time performance: BU invention could ’sweeten’ diabetes therapy within five years

12.06.2003


C.J. Zhong hopes that within the next three to five years diabetics the world could see their quality of life enhanced by his tiny invention-a chip-sized pump with no moving parts. The device is also expected to find its way into myriad industrial and environmental applications, where it could mean huge savings in manufacturing and monitoring processes.



Zhong’s patent on the low-power, electrically driven pumping device is one of the reasons the State University of New York has broken into the U.S. Patent and Trademark Office’s list of the top 10 patent-producing U.S. universities, jumping to 8th in 2002 from 17th in 2001.

Zhong was among four Binghamton researchers honored last week by State University of New York Chancellor Robert L. King for their contribution to the advancement of humanity through groundbreaking research. Zhong was recognized with a First Patent Award for his device. (See related story.)


An assistant professor of chemistry at Binghamton since 1998, Zhong refers to the invention as a "pumpless pump" because it lacks mechanical parts. The pumping device is the size of a computer chip and could be fabricated at a scale comparable to an adult’s fingernail. The device comprises a detector, a column filled with moving liquid, and an injector. The pumping action is achieved when a wire sends an electrical voltage to two immiscible fluids in a tiny column, perhaps as small as the diameter of a hair. Applying opposite charges to each side of the column causes the fluids to oscillate, thereby simulating the action of a pump. In some ways, the tiny system works like a thermostat: it takes a small sample, analyzes it, and tells other components how to act in response.

Zhong’s device has significant potential in the treatment of diabetes because it is small enough to be inserted into and remain in the body where it would conduct microfluidic analysis, constantly measuring the need for insulin and, then, delivering precise amounts of insulin at the appropriate times. Because the detector would remain constantly at work, the device could eliminate the need for regular blood tests. Moreover, because less time would have passed between infusions of insulin, it is likely that insulin levels could be better maintained, without soaring and surging as dramatically as they sometimes do with present day treatment strategies. While his device is not an "artificial pancreas," Zhong says that it could well prove to be an integral part of a system that could someday become just that.

Diabetics are not the only ones who will benefit from the tiny pumping device, developed by Zhong and his research team of undergraduate and graduate students and a post-doctoral researcher. Any small, closed environment could benefit from tiny equipment that requires little fuel and produces no waste, he said.

"For example, there’s the space shuttle," Zhong said, "If you want to analyze the water quality, this would allow you to take as small a sample as possible." That would make it possible for astronauts on an especially long mission to ensure the potability of their water supply without significantly depleting their supply by repeated testing, he added.

Zhong’s pumping device can also be operated by remote control, working where human hands cannot -- or should not reach. "One of the labs we’re working with on this project is interested in dealing with metal contaminants from nuclear waste," said Zhong. "Their current technology is to go in the field, take samples of contaminated soil, and analyze them back in the lab. What we want to do is make remote controllable portable chip devices that sit in the field."

Making lab equipment smaller and more efficient is one of Zhong’s chief research goals. It’s a goal he sees as highly achievable.

"Look at the computer," he said. "Twenty years ago, it was huge. Now it’s tiny." He eventually hopes to create what he calls a "lab on a chip," by shrinking down all of the equipment in a chemistry lab to the size of computer chips. Smaller equipment not only uses fewer resources, he said, but creates less waste.

"Large equipment typically generates significant waste," he said, "But if you use a miniature instrument, there’s almost no waste." For example, because his new pump is so small, it runs on an electrical current supplied by a tiny battery. A conventional pump requires the power of a generator, which needs gasoline and emits toxic fumes as a byproduct.

Regardless of the size at which it is produced, the design of Zhong’s device has any number of advantages over current technologies. "Mechanical parts need maintenance and repair," he said. "This is basically a fluid pumping mechanism," with no need for lubrication, repairs, or spare parts. Produced at the scale of a chip, it is also practically weightless, especially compared to a conventional pump.

Right now, Zhong’s invention is still in the prototype stage, but the weightless, maintenance-free and implantable "pumpless pump" probably is not too far off, he speculated. "We are not there yet, but this is going to take off very fast," he said. "Perhaps three to four years."

That might not seem soon enough for diabetics who would gladly trade lancets and blood test strips for a tiny internal sensor attached to an insulin pump. But Zhong’s miniature invention nevertheless seems likely to soon be making life much sweeter for many in the health care, manufacturing and environmental arenas.

Ingrid Husisian | Binghamton University
Further information:
http://research.binghamton.edu/discovere/june2003/TopStories/CJZhong.htm

More articles from Health and Medicine:

nachricht Hot cars can hit deadly temperatures in as little as one hour
24.05.2018 | Arizona State University

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>