Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers successfully inhibit spread of cancer in mice

05.06.2003


Many types of cancer--like those of the breast and prostate--would not be nearly as deadly if it weren’t for their ability to spread to vital organs. Still, scientists don’t yet fully understand the way in which cancer spreads, or metastasizes, or how to prevent the process.



Now, researchers at the San Francisco VA Medical Center (SFVAMC) have used a modified version of a naturally occurring human protein to decrease the spread of human breast cancer implanted in mice.

"We were able to significantly reduce the spread of the disease and decrease tumor growth without any evidence of toxicity," said senior author Gary Jarvis, PhD, a SFVAMC microbiologist and UCSF associate professor of laboratory medicine.


The current findings appear in the June issue of Clinical Cancer Research, with figures from the paper appearing on its cover.

Jarvis credits first author Constance John, PhD, a research chemist in his lab at the time, with coming up with the idea of interfering with the ability of cancer cells to stick to one another as a way of attacking metastasis. The ability to adhere to other cells is what allows a cell that breaks away from a primary tumor to lodge in other parts of the body.

"It’s when tumors spread to essential organs, such as the liver or lung, that they become fatal. There is nothing to date that has been approved by the FDA for treatment of cancer that works on that process," said John.

John, who is no longer affiliated with SFVAMC, is currently the president of MandalMed, Inc., a San Francisco-based company working to develop a drug that inhibits metastasis based on these findings. (Jarvis, of SFVAMC/UCSF, has no financial stake in MandalMed.)

A drug that could reduce metastasis would greatly improve upon the beneficial outcomes already achieved with chemotherapy, surgery and radiation, John said. "We’re not trying to develop a cure for cancer. What we’re trying to do is make cancer a disease that one can live with," she said.

As a way of targeting metastasis, John proposed modifying a human protein known as galectin-3, a member of the family of proteins called lectins that bind to sugar molecules on the surfaces of cells. Galectin-3 is known to play multiple roles in cancer formation, including the promotion of cell-to-cell adhesion, or sticking. "The idea was to break that contact and inhibit secondary cancer formation," Jarvis said.

The researchers left the sugar-binding region of galectin-3 intact, but removed the part of the protein that normally allows cells to stick to one another. They then implanted portions of human-derived breast cancer tumors into the chest pads of nude mice, mice having a low-functioning immune system. Once the tumors were established, they injected the experimental animals with truncated galectin-3. The control mice were given sham injections.

By the end of the experiment, the team found that cancer had spread to lymph nodes or other organs in four out of 20 experimental mice versus 11 of 20 control mice. In addition, the post-treatment growth of the implanted tumor fragments was significantly less than in the control animals. Monitoring the animals during this and additional experiments showed that the modified protein did not cause any apparent adverse effects or death in the mice.

Jarvis believes that the modified version of galectin-3 was able to interfere with the breast cancer cells’ ability to stick to one another and to the healthy cells of other organs. "The data supports the hypotheses that truncated galectin-3 inhibits the process of metastasis," he said.

Jarvis and his colleagues at the SFVAMC are currently working on the functional studies that would determine the mechanism behind the reduction in metastasis they observed.

Jarvis said a drug therapy targeting galectin-3 activity might someday be effectively used in combination with currently available cancer medications. "If we can stop metastasis in humans, we will have gone a long way towards successfully treating cancer," he said.

Jarvis and his colleagues at the SFVAMC have since repeated these results and plan to extend the current study by looking at different types of cancer and different truncated versions of galectin-3 in combination with currently available anticancer medications.


Additional authors on the paper include Hakon Leffler, MD, PhD, Barbro Kahl-Knutsson and Inga Svensson of the Institute of Laboratory Medicine at Lund University in Lund, Sweden.

This research was supported by a grant to the Northern California Institute for Research and Education (NCIRE) from the U.S. Department of the Army Breast Cancer Research Program. Based at the SFVAMC, NCIRE is the largest congressionally sanctioned research foundation. The Swedish Medical Research Council also provided support.

Statement of financial disclosure: Neither UCSF, SFVAMC nor Gary Jarvis, PhD, has a financial stake in MandalMed, Inc. Constance John, PhD, serves as president of MandalMed, Inc., but was employed as a research chemist in Jarvis’ laboratory at the time this research was conducted.

Camille Mojica | EurekAlert!
Further information:
http://www.ucsf.edu/

More articles from Health and Medicine:

nachricht Satellites, airport visibility readings shed light on troops' exposure to air pollution
09.12.2016 | Veterans Affairs Research Communications

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>