Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers successfully inhibit spread of cancer in mice

05.06.2003


Many types of cancer--like those of the breast and prostate--would not be nearly as deadly if it weren’t for their ability to spread to vital organs. Still, scientists don’t yet fully understand the way in which cancer spreads, or metastasizes, or how to prevent the process.



Now, researchers at the San Francisco VA Medical Center (SFVAMC) have used a modified version of a naturally occurring human protein to decrease the spread of human breast cancer implanted in mice.

"We were able to significantly reduce the spread of the disease and decrease tumor growth without any evidence of toxicity," said senior author Gary Jarvis, PhD, a SFVAMC microbiologist and UCSF associate professor of laboratory medicine.


The current findings appear in the June issue of Clinical Cancer Research, with figures from the paper appearing on its cover.

Jarvis credits first author Constance John, PhD, a research chemist in his lab at the time, with coming up with the idea of interfering with the ability of cancer cells to stick to one another as a way of attacking metastasis. The ability to adhere to other cells is what allows a cell that breaks away from a primary tumor to lodge in other parts of the body.

"It’s when tumors spread to essential organs, such as the liver or lung, that they become fatal. There is nothing to date that has been approved by the FDA for treatment of cancer that works on that process," said John.

John, who is no longer affiliated with SFVAMC, is currently the president of MandalMed, Inc., a San Francisco-based company working to develop a drug that inhibits metastasis based on these findings. (Jarvis, of SFVAMC/UCSF, has no financial stake in MandalMed.)

A drug that could reduce metastasis would greatly improve upon the beneficial outcomes already achieved with chemotherapy, surgery and radiation, John said. "We’re not trying to develop a cure for cancer. What we’re trying to do is make cancer a disease that one can live with," she said.

As a way of targeting metastasis, John proposed modifying a human protein known as galectin-3, a member of the family of proteins called lectins that bind to sugar molecules on the surfaces of cells. Galectin-3 is known to play multiple roles in cancer formation, including the promotion of cell-to-cell adhesion, or sticking. "The idea was to break that contact and inhibit secondary cancer formation," Jarvis said.

The researchers left the sugar-binding region of galectin-3 intact, but removed the part of the protein that normally allows cells to stick to one another. They then implanted portions of human-derived breast cancer tumors into the chest pads of nude mice, mice having a low-functioning immune system. Once the tumors were established, they injected the experimental animals with truncated galectin-3. The control mice were given sham injections.

By the end of the experiment, the team found that cancer had spread to lymph nodes or other organs in four out of 20 experimental mice versus 11 of 20 control mice. In addition, the post-treatment growth of the implanted tumor fragments was significantly less than in the control animals. Monitoring the animals during this and additional experiments showed that the modified protein did not cause any apparent adverse effects or death in the mice.

Jarvis believes that the modified version of galectin-3 was able to interfere with the breast cancer cells’ ability to stick to one another and to the healthy cells of other organs. "The data supports the hypotheses that truncated galectin-3 inhibits the process of metastasis," he said.

Jarvis and his colleagues at the SFVAMC are currently working on the functional studies that would determine the mechanism behind the reduction in metastasis they observed.

Jarvis said a drug therapy targeting galectin-3 activity might someday be effectively used in combination with currently available cancer medications. "If we can stop metastasis in humans, we will have gone a long way towards successfully treating cancer," he said.

Jarvis and his colleagues at the SFVAMC have since repeated these results and plan to extend the current study by looking at different types of cancer and different truncated versions of galectin-3 in combination with currently available anticancer medications.


Additional authors on the paper include Hakon Leffler, MD, PhD, Barbro Kahl-Knutsson and Inga Svensson of the Institute of Laboratory Medicine at Lund University in Lund, Sweden.

This research was supported by a grant to the Northern California Institute for Research and Education (NCIRE) from the U.S. Department of the Army Breast Cancer Research Program. Based at the SFVAMC, NCIRE is the largest congressionally sanctioned research foundation. The Swedish Medical Research Council also provided support.

Statement of financial disclosure: Neither UCSF, SFVAMC nor Gary Jarvis, PhD, has a financial stake in MandalMed, Inc. Constance John, PhD, serves as president of MandalMed, Inc., but was employed as a research chemist in Jarvis’ laboratory at the time this research was conducted.

Camille Mojica | EurekAlert!
Further information:
http://www.ucsf.edu/

More articles from Health and Medicine:

nachricht NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures
17.11.2017 | National Institute of Standards and Technology (NIST)

nachricht High speed video recording precisely measures blood cell velocity
15.11.2017 | ITMO University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>