Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers successfully inhibit spread of cancer in mice

05.06.2003


Many types of cancer--like those of the breast and prostate--would not be nearly as deadly if it weren’t for their ability to spread to vital organs. Still, scientists don’t yet fully understand the way in which cancer spreads, or metastasizes, or how to prevent the process.



Now, researchers at the San Francisco VA Medical Center (SFVAMC) have used a modified version of a naturally occurring human protein to decrease the spread of human breast cancer implanted in mice.

"We were able to significantly reduce the spread of the disease and decrease tumor growth without any evidence of toxicity," said senior author Gary Jarvis, PhD, a SFVAMC microbiologist and UCSF associate professor of laboratory medicine.


The current findings appear in the June issue of Clinical Cancer Research, with figures from the paper appearing on its cover.

Jarvis credits first author Constance John, PhD, a research chemist in his lab at the time, with coming up with the idea of interfering with the ability of cancer cells to stick to one another as a way of attacking metastasis. The ability to adhere to other cells is what allows a cell that breaks away from a primary tumor to lodge in other parts of the body.

"It’s when tumors spread to essential organs, such as the liver or lung, that they become fatal. There is nothing to date that has been approved by the FDA for treatment of cancer that works on that process," said John.

John, who is no longer affiliated with SFVAMC, is currently the president of MandalMed, Inc., a San Francisco-based company working to develop a drug that inhibits metastasis based on these findings. (Jarvis, of SFVAMC/UCSF, has no financial stake in MandalMed.)

A drug that could reduce metastasis would greatly improve upon the beneficial outcomes already achieved with chemotherapy, surgery and radiation, John said. "We’re not trying to develop a cure for cancer. What we’re trying to do is make cancer a disease that one can live with," she said.

As a way of targeting metastasis, John proposed modifying a human protein known as galectin-3, a member of the family of proteins called lectins that bind to sugar molecules on the surfaces of cells. Galectin-3 is known to play multiple roles in cancer formation, including the promotion of cell-to-cell adhesion, or sticking. "The idea was to break that contact and inhibit secondary cancer formation," Jarvis said.

The researchers left the sugar-binding region of galectin-3 intact, but removed the part of the protein that normally allows cells to stick to one another. They then implanted portions of human-derived breast cancer tumors into the chest pads of nude mice, mice having a low-functioning immune system. Once the tumors were established, they injected the experimental animals with truncated galectin-3. The control mice were given sham injections.

By the end of the experiment, the team found that cancer had spread to lymph nodes or other organs in four out of 20 experimental mice versus 11 of 20 control mice. In addition, the post-treatment growth of the implanted tumor fragments was significantly less than in the control animals. Monitoring the animals during this and additional experiments showed that the modified protein did not cause any apparent adverse effects or death in the mice.

Jarvis believes that the modified version of galectin-3 was able to interfere with the breast cancer cells’ ability to stick to one another and to the healthy cells of other organs. "The data supports the hypotheses that truncated galectin-3 inhibits the process of metastasis," he said.

Jarvis and his colleagues at the SFVAMC are currently working on the functional studies that would determine the mechanism behind the reduction in metastasis they observed.

Jarvis said a drug therapy targeting galectin-3 activity might someday be effectively used in combination with currently available cancer medications. "If we can stop metastasis in humans, we will have gone a long way towards successfully treating cancer," he said.

Jarvis and his colleagues at the SFVAMC have since repeated these results and plan to extend the current study by looking at different types of cancer and different truncated versions of galectin-3 in combination with currently available anticancer medications.


Additional authors on the paper include Hakon Leffler, MD, PhD, Barbro Kahl-Knutsson and Inga Svensson of the Institute of Laboratory Medicine at Lund University in Lund, Sweden.

This research was supported by a grant to the Northern California Institute for Research and Education (NCIRE) from the U.S. Department of the Army Breast Cancer Research Program. Based at the SFVAMC, NCIRE is the largest congressionally sanctioned research foundation. The Swedish Medical Research Council also provided support.

Statement of financial disclosure: Neither UCSF, SFVAMC nor Gary Jarvis, PhD, has a financial stake in MandalMed, Inc. Constance John, PhD, serves as president of MandalMed, Inc., but was employed as a research chemist in Jarvis’ laboratory at the time this research was conducted.

Camille Mojica | EurekAlert!
Further information:
http://www.ucsf.edu/

More articles from Health and Medicine:

nachricht How cancer metastasis happens: Researchers reveal a key mechanism
19.01.2018 | Weill Cornell Medicine

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>