Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nottingham academics develop new nanotechnology to treat brain tumours

04.06.2003


Academics at The University of Nottingham are developing new nanotechnology that could be used to treat brain tumours more effectively by reducing the serious side-effects associated with anti-cancer drugs.

A team led by Dr Martin Garnett in the School of Pharmaceutical Sciences has been awarded a £206,000 grant from the Biotechnology and Biological Sciences Research Council to continue investigations on the preparation of nanoparticles for delivering drugs to brain tumours.

Anti-cancer drugs are problematic because they can cause significant problems in other non-diseased areas of the body too, leading to nasty side effects for the patient. For brain tumours this is doubly difficult because, for most drugs, access to tumours can be even trickier.



The Nottingham academics are looking at changing the behaviour of anti-cancer molecules by putting them into tiny particles called nanoparticles, which are one ten-thousandth of a millimetre in diameter. These nanoparticles are made from polymers - molecules made from a long chain of chemical units. Using a ’’water-loving’’ polymer on the outside, and a ’’water-hating’’ polymer on the inside, allows the particles to assemble themselves with the drugs held in the centre of the nanoparticles.

Because of their size, these nanoparticles can only get out of the blood stream at the tumour and in the liver, preventing toxicity in many other tissues in the body.

The ’’water-loving’’ polymer on the surface of these particles greatly reduces the uptake of the drug to the liver, ensuring that it travels to the brain tumour more effectively. The polymers previously available for making nanoparticles were only capable of carrying small amounts of a drug and couldn’’t hold on to the drug for very long, leading the academics to design some new polymers in an attempt to overcome these problems.

Developing and testing new delivery systems for drugs can also be a problem because of the toxicity of anti-cancer drugs. The academics are overcoming this problem by using drugs that are used to treat the inflammation of the brain that accompanies brain tumours, but are much less harmful to the patient and easier for the researchers to work with.

The idea for this new technology first came as part of discussions within the University’’s Children’’s Brain Tumour Research Centre which involves a number of academics from different disciplines. Co-ordinated by Dr David Walker the centre investigates the causes and potential new treatments for brain tumours in children.

The project is part of a two-centre award from the BBSRC totalling £409,000 which involves the synthesis of new polymers by scientists Dr Gillian Hutcheon and Dr Sean Higgins at Liverpool John Moores University and the development of nanoparticles by Dr Garnett and colleague Dr Paraskevi Kallinteri at The University of Nottingham.

The new project builds on results from a previous BBSRC grant, which have shown that the new polymers have allowed the researchers to incorporate anti-inflammatory drugs into nanoparticles in much greater amounts than with previous polymers and that they also hold on to the drugs much more firmly.

A patent has been filed on the use of these polymers, which should help in the future development of these delivery systems, and the drug release properties of these polymers are now being investigated by research student Weina Meng, whose work has been partly funded by the Children’’s Brain Tumour Research Centre.

The new project will develop these polymers further to discover whether it is possible to incorporate a much wider variety of drugs, including toxic anti-cancer drugs, and also to demonstrate that they work well in test systems.

Dr Garnett said: "I am very pleased with the progress in this project so far. The new polymers have exceeded my expectations and the flexibility of the synthesis of these polymers offers hope that they should be suitable for delivering a wide range of drugs.

"While there is still a long road ahead, we hope that this work will lead to clinical trials of these delivery systems and, eventually, a reduction in the side effects that patients suffer as a result of being treated with anti-cancer drugs."

Lyn Heath-Harvey | alfa
Further information:
http://www.nottingham.ac.uk/public-affairs/index.html

More articles from Health and Medicine:

nachricht A 'half-hearted' solution to one-sided heart failure
24.11.2017 | Boston Children's Hospital

nachricht New study points the way to therapy for rare cancer that targets the young
22.11.2017 | Rockefeller University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>