Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Nottingham academics develop new nanotechnology to treat brain tumours


Academics at The University of Nottingham are developing new nanotechnology that could be used to treat brain tumours more effectively by reducing the serious side-effects associated with anti-cancer drugs.

A team led by Dr Martin Garnett in the School of Pharmaceutical Sciences has been awarded a £206,000 grant from the Biotechnology and Biological Sciences Research Council to continue investigations on the preparation of nanoparticles for delivering drugs to brain tumours.

Anti-cancer drugs are problematic because they can cause significant problems in other non-diseased areas of the body too, leading to nasty side effects for the patient. For brain tumours this is doubly difficult because, for most drugs, access to tumours can be even trickier.

The Nottingham academics are looking at changing the behaviour of anti-cancer molecules by putting them into tiny particles called nanoparticles, which are one ten-thousandth of a millimetre in diameter. These nanoparticles are made from polymers - molecules made from a long chain of chemical units. Using a ’’water-loving’’ polymer on the outside, and a ’’water-hating’’ polymer on the inside, allows the particles to assemble themselves with the drugs held in the centre of the nanoparticles.

Because of their size, these nanoparticles can only get out of the blood stream at the tumour and in the liver, preventing toxicity in many other tissues in the body.

The ’’water-loving’’ polymer on the surface of these particles greatly reduces the uptake of the drug to the liver, ensuring that it travels to the brain tumour more effectively. The polymers previously available for making nanoparticles were only capable of carrying small amounts of a drug and couldn’’t hold on to the drug for very long, leading the academics to design some new polymers in an attempt to overcome these problems.

Developing and testing new delivery systems for drugs can also be a problem because of the toxicity of anti-cancer drugs. The academics are overcoming this problem by using drugs that are used to treat the inflammation of the brain that accompanies brain tumours, but are much less harmful to the patient and easier for the researchers to work with.

The idea for this new technology first came as part of discussions within the University’’s Children’’s Brain Tumour Research Centre which involves a number of academics from different disciplines. Co-ordinated by Dr David Walker the centre investigates the causes and potential new treatments for brain tumours in children.

The project is part of a two-centre award from the BBSRC totalling £409,000 which involves the synthesis of new polymers by scientists Dr Gillian Hutcheon and Dr Sean Higgins at Liverpool John Moores University and the development of nanoparticles by Dr Garnett and colleague Dr Paraskevi Kallinteri at The University of Nottingham.

The new project builds on results from a previous BBSRC grant, which have shown that the new polymers have allowed the researchers to incorporate anti-inflammatory drugs into nanoparticles in much greater amounts than with previous polymers and that they also hold on to the drugs much more firmly.

A patent has been filed on the use of these polymers, which should help in the future development of these delivery systems, and the drug release properties of these polymers are now being investigated by research student Weina Meng, whose work has been partly funded by the Children’’s Brain Tumour Research Centre.

The new project will develop these polymers further to discover whether it is possible to incorporate a much wider variety of drugs, including toxic anti-cancer drugs, and also to demonstrate that they work well in test systems.

Dr Garnett said: "I am very pleased with the progress in this project so far. The new polymers have exceeded my expectations and the flexibility of the synthesis of these polymers offers hope that they should be suitable for delivering a wide range of drugs.

"While there is still a long road ahead, we hope that this work will lead to clinical trials of these delivery systems and, eventually, a reduction in the side effects that patients suffer as a result of being treated with anti-cancer drugs."

Lyn Heath-Harvey | alfa
Further information:

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>