Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Disappearing’ tumour study could lead to new cancer treatments

04.06.2003


A research study at The University of Nottingham looking at how growth can contribute to spontaneous childhood cancer regression could lead to more effective ways of treating tumours.



The one-year project, led by Christopher Jones in the School of Nursing in collaboration with Dr Michael Symonds in the Division of Child Health and Dr David Walker at the University’s Children’s Brain Tumour Research Centre, will look at whether growth hormone plays a part in tumours spontaneously getting better.

The researchers are looking at neuroblastoma, which accounts for around six per cent of all childhood cancers. Around 100 children develop neuroblastoma each year in the UK and most of these are less than four years of age.


In around three-quarters of these cases the cancer spreads around the body and the current survival rates are only around 30 per cent.

However, when a tumour of this kind occurs in the liver, particularly in the first year of life, it is only fatal in between 10 and 20 per cent of sufferers and, in many cases, spontaneously regresses without the need for treatment.

Scientists have been studying this medical phenomenon for many years, although most research has centred on looking at the biology of the tumour in an effort to discover why it self-destructs.

The Nottingham researchers, however, believe it could be something within the body and not the tumour itself that sparks off this regression and think that it could be due to the release of hormones that control growth in infancy.

Dr Michael Symonds said: "We believe that spontaneous tumour regression is linked to unique changes within the liver in early childhood, which coincide with the onset of growth hormone-dependent growth."

It is hoped that the study, funded with £7,000 from the Special Trustees of Nottingham University Hospital, will attract more funding for the study of childhood cancers and could even lead to more effective treatments for non-regressing neuroblastoma, as well as other aggressive tumours such as breast cancer and certain types of childhood brain tumours.

Lyn Heath-Harvey | alfa
Further information:
http://www.nottingham.ac.uk/public-affairs/index.html

More articles from Health and Medicine:

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Better equipped in the fight against lung cancer
16.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>