Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Disappearing’ tumour study could lead to new cancer treatments

04.06.2003


A research study at The University of Nottingham looking at how growth can contribute to spontaneous childhood cancer regression could lead to more effective ways of treating tumours.



The one-year project, led by Christopher Jones in the School of Nursing in collaboration with Dr Michael Symonds in the Division of Child Health and Dr David Walker at the University’s Children’s Brain Tumour Research Centre, will look at whether growth hormone plays a part in tumours spontaneously getting better.

The researchers are looking at neuroblastoma, which accounts for around six per cent of all childhood cancers. Around 100 children develop neuroblastoma each year in the UK and most of these are less than four years of age.


In around three-quarters of these cases the cancer spreads around the body and the current survival rates are only around 30 per cent.

However, when a tumour of this kind occurs in the liver, particularly in the first year of life, it is only fatal in between 10 and 20 per cent of sufferers and, in many cases, spontaneously regresses without the need for treatment.

Scientists have been studying this medical phenomenon for many years, although most research has centred on looking at the biology of the tumour in an effort to discover why it self-destructs.

The Nottingham researchers, however, believe it could be something within the body and not the tumour itself that sparks off this regression and think that it could be due to the release of hormones that control growth in infancy.

Dr Michael Symonds said: "We believe that spontaneous tumour regression is linked to unique changes within the liver in early childhood, which coincide with the onset of growth hormone-dependent growth."

It is hoped that the study, funded with £7,000 from the Special Trustees of Nottingham University Hospital, will attract more funding for the study of childhood cancers and could even lead to more effective treatments for non-regressing neuroblastoma, as well as other aggressive tumours such as breast cancer and certain types of childhood brain tumours.

Lyn Heath-Harvey | alfa
Further information:
http://www.nottingham.ac.uk/public-affairs/index.html

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>