Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Malaria parasite’s sweet tooth found

04.06.2003


A completely new way of killing the malaria parasite has been found by researchers at St George’s Hospital Medical School in London. Professor Sanjeev Krishna’s research group is world-renowned in the battle against infectious diseases and has now discovered how to stop the malaria parasite’s sugar transport protein from working. This prevents the parasite growing and multiplying in the red blood cells where it lives. The research is published this week in the Proceedings of the National Academy of Sciences and was predominately funded by the Medical Research Council.



Malaria kills 3,000 children every day and the parasite that causes malaria is becoming harder to treat as it becomes resistant to more and more drugs. New ways of fighting this dangerous infection are needed urgently.

Now researchers at St George’s Hospital Medical School, in collaboration with colleagues at Université Joseph Fourier, Grenoble, France, and the London School of Tropical Medicine, have discovered a chink in the malaria parasite’s armour – its sweet tooth. The malaria parasite needs sugar in the form of glucose to grow and multiply in the red blood cells. It uses what is known as a parasite-encoded facilitative hexose transporter (PfHT) (a special transport protein) to absorb the glucose around it. By introducing a new compound, the scientists stop the parasite’s sugar transport protein from working. Blocking this glucose uptake kills even drug resistant strains of the parasite.


“We have spent ten years developing new ways of studying parasite transport proteins so that we could work out how to block the action of the glucose transporter. This discovery proves for the first time that it is worth going after transport proteins of the malaria parasite and that parasites cannot live without this transporter working properly,” says Professor Krishna. “We are very excited about this research, as this new information gives us the potential to design new drugs against malaria.”

Alice Bows | alfa
Further information:
http://www.sghms.ac.uk

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>