Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Malaria parasite’s sweet tooth found

04.06.2003


A completely new way of killing the malaria parasite has been found by researchers at St George’s Hospital Medical School in London. Professor Sanjeev Krishna’s research group is world-renowned in the battle against infectious diseases and has now discovered how to stop the malaria parasite’s sugar transport protein from working. This prevents the parasite growing and multiplying in the red blood cells where it lives. The research is published this week in the Proceedings of the National Academy of Sciences and was predominately funded by the Medical Research Council.



Malaria kills 3,000 children every day and the parasite that causes malaria is becoming harder to treat as it becomes resistant to more and more drugs. New ways of fighting this dangerous infection are needed urgently.

Now researchers at St George’s Hospital Medical School, in collaboration with colleagues at Université Joseph Fourier, Grenoble, France, and the London School of Tropical Medicine, have discovered a chink in the malaria parasite’s armour – its sweet tooth. The malaria parasite needs sugar in the form of glucose to grow and multiply in the red blood cells. It uses what is known as a parasite-encoded facilitative hexose transporter (PfHT) (a special transport protein) to absorb the glucose around it. By introducing a new compound, the scientists stop the parasite’s sugar transport protein from working. Blocking this glucose uptake kills even drug resistant strains of the parasite.


“We have spent ten years developing new ways of studying parasite transport proteins so that we could work out how to block the action of the glucose transporter. This discovery proves for the first time that it is worth going after transport proteins of the malaria parasite and that parasites cannot live without this transporter working properly,” says Professor Krishna. “We are very excited about this research, as this new information gives us the potential to design new drugs against malaria.”

Alice Bows | alfa
Further information:
http://www.sghms.ac.uk

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>