Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Malaria parasite’s sweet tooth found

04.06.2003


A completely new way of killing the malaria parasite has been found by researchers at St George’s Hospital Medical School in London. Professor Sanjeev Krishna’s research group is world-renowned in the battle against infectious diseases and has now discovered how to stop the malaria parasite’s sugar transport protein from working. This prevents the parasite growing and multiplying in the red blood cells where it lives. The research is published this week in the Proceedings of the National Academy of Sciences and was predominately funded by the Medical Research Council.



Malaria kills 3,000 children every day and the parasite that causes malaria is becoming harder to treat as it becomes resistant to more and more drugs. New ways of fighting this dangerous infection are needed urgently.

Now researchers at St George’s Hospital Medical School, in collaboration with colleagues at Université Joseph Fourier, Grenoble, France, and the London School of Tropical Medicine, have discovered a chink in the malaria parasite’s armour – its sweet tooth. The malaria parasite needs sugar in the form of glucose to grow and multiply in the red blood cells. It uses what is known as a parasite-encoded facilitative hexose transporter (PfHT) (a special transport protein) to absorb the glucose around it. By introducing a new compound, the scientists stop the parasite’s sugar transport protein from working. Blocking this glucose uptake kills even drug resistant strains of the parasite.


“We have spent ten years developing new ways of studying parasite transport proteins so that we could work out how to block the action of the glucose transporter. This discovery proves for the first time that it is worth going after transport proteins of the malaria parasite and that parasites cannot live without this transporter working properly,” says Professor Krishna. “We are very excited about this research, as this new information gives us the potential to design new drugs against malaria.”

Alice Bows | alfa
Further information:
http://www.sghms.ac.uk

More articles from Health and Medicine:

nachricht Finnish research group discovers a new immune system regulator
23.02.2018 | University of Turku

nachricht Minimising risks of transplants
22.02.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>