Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Malaria parasite’s sweet tooth found

04.06.2003


A completely new way of killing the malaria parasite has been found by researchers at St George’s Hospital Medical School in London. Professor Sanjeev Krishna’s research group is world-renowned in the battle against infectious diseases and has now discovered how to stop the malaria parasite’s sugar transport protein from working. This prevents the parasite growing and multiplying in the red blood cells where it lives. The research is published this week in the Proceedings of the National Academy of Sciences and was predominately funded by the Medical Research Council.



Malaria kills 3,000 children every day and the parasite that causes malaria is becoming harder to treat as it becomes resistant to more and more drugs. New ways of fighting this dangerous infection are needed urgently.

Now researchers at St George’s Hospital Medical School, in collaboration with colleagues at Université Joseph Fourier, Grenoble, France, and the London School of Tropical Medicine, have discovered a chink in the malaria parasite’s armour – its sweet tooth. The malaria parasite needs sugar in the form of glucose to grow and multiply in the red blood cells. It uses what is known as a parasite-encoded facilitative hexose transporter (PfHT) (a special transport protein) to absorb the glucose around it. By introducing a new compound, the scientists stop the parasite’s sugar transport protein from working. Blocking this glucose uptake kills even drug resistant strains of the parasite.


“We have spent ten years developing new ways of studying parasite transport proteins so that we could work out how to block the action of the glucose transporter. This discovery proves for the first time that it is worth going after transport proteins of the malaria parasite and that parasites cannot live without this transporter working properly,” says Professor Krishna. “We are very excited about this research, as this new information gives us the potential to design new drugs against malaria.”

Alice Bows | alfa
Further information:
http://www.sghms.ac.uk

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>