Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Experimental Cancer Drug Shrinks Tumors and Extends Survival in Metastatic Colorectal Cancer Patients

02.06.2003


An experimental cancer drug named bevacizumab (trade name Avastin) is the first "anti-angiogenesis" drug to prove that it can shrink tumors and extend survival in patients with metastatic colorectal cancer, according to a national clinical trial led by researchers at the Duke Comprehensive Cancer Center.



Bevacizumab is known as an anti-angiogenesis drug because it blocks the formation of blood vessels in tumors (a process called angiogenesis) and thus inhibits their growth.

Patients who received bevacizumab together with standard chemotherapy survived a median of five months longer than patients who received standard chemotherapy alone, the study showed. A five-month life extension is quite significant, given that patients with newly diagnosed colorectal cancer survive an average of 15 to 17 months, said Herbert Hurwitz, M.D., lead investigator of the study and an assistant professor of medicine at Duke University Medical Center.


Furthermore, the new study lends critical support to the long-debated approach of choking off a tumor’s blood supply in order to inhibit tumor growth, said Hurwitz. This anti-angiogenesis approach has been touted as a plausible strategy against tumors but has never been proven successful in a large, randomized group of patients -- until now.

Hurwitz presented the results of the study, funded by Genentech, Inc., today (June 1) at the annual meeting of the American Society of Clinical Oncology in Chicago.

"Our study offers important proof of the philosophy that targeting a tumor’s blood supply can, in fact, inhibit the tumor’s ability to proliferate," said Hurwitz. "Moreover, our current success will likely lead the cancer community to conduct large-scale clinical testing of bevacizumab as a treatment for other types of cancers."

In the current study, approximately 800 patients at various institutions nationwide were randomly assigned to receive bevacizumab plus standard chemotherapy (irinotecan, 5-FU, and leucovorin), or the standard chemotherapy with placebo.

Patients who received bevacizumab plus chemotherapy survived a median of 20.3 months, compared to 15.6 months for patients who received standard chemotherapy alone. Bevacizumab also delayed cancer progression for a median of 10.6 months versus 6.2 months for the standard chemotherapy. In addition, the bevacizumab and chemotherapy combination shrank tumors by at least half in 45 percent of patients, versus 35 percent in patients receiving standard chemotherapy alone.

"Metastatic colorectal cancer is a very aggressive disease, so we view these results with real optimism, as we now have another weapon in the fight against this cancer," said Hurwitz.

Bevacizumab works by inhibiting a protein called vascular endothelial growth factor (VEGF), which is secreted by malignant tumors in order to grow and maintain their blood vessels. When VEGF is blocked by bevacizumab, the tumor’s blood is diminished and the tumor shrinks and slows its spread.

Bevacizumab has fewer side effects than standard chemotherapy because it selectively targets blood vessels within tumors, which secrete more VEGF than do normal blood vessels in the body. The most frequent side effect was a moderate elevation in blood pressure, which was easily managed by medications, the study showed.

Hurwitz said that, while the bevacizumab results are very encouraging, the drug represents one of many weapons in a battery of drugs designed to combat the disease.

"Cancer is a very savvy opponent, and it often devises ways to circumvent our current methods of inhibiting it," said Hurwitz. "In addition, each tumor has its own characteristics that may cause it to behave differently from another patient’s tumor. For these reasons, no single therapy will work for every patient, so it’s important to develop multiple ways of combating the growth and spread of cancer."

Becky Levine | DukeNews
Further information:
http://dukemednews.org/news/article.php?id=6612

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>