Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Early Clinical Trials Show That Novel Experimental Drug Shrinks Tumors in Patients with Various Types of Cancer

02.06.2003


As more is learned about how cancer develops, scientists have begun designing new drugs that directly target cancer cells, leaving healthy ones intact. Having fewer side effects, some of these drugs work by blocking growth signaling processes within cancer cells, while others enlist the body’s immune system to recognize and mount an attack against the cancer cell. But regardless of how they work, most of these drugs are designed to treat a specific cancer and cannot be used to treat other tumor types.

Now, an early clinical trial at the Cedars-Sinai Medical Center has shown that an experimental drug called 2C4 (trade name is Omnitarg) was effective to shrink tumors in patients with several different types of cancer. The findings, presented at the 39th annual meeting of the American Society of Clinical Oncology in Chicago, may lead to a new way to treat various types of cancer.

"What’s interesting is that this drug effectively shrank tumors in several completely different types of cancer in early stage clinical trials," said David Agus, M.D., Research Director at the Cedars-Sinai Prostate Cancer Center and first author of the study. "This tells us that the drug targets a growth signaling pathway in cancer cells that is common in many solid tumors."



The drug, called 2C4 and developed by Genentech, Inc., is a monoclonal antibody, or protein that enlists the body’s immune system to attack foreign invaders, such as viruses or bacteria. It works by targeting HER-2/neu, a member of the HER kinase family of proteins. The protein sits on the surface of cancer cells and receives signals from growth factor molecules within the HER family, which in, turn stimulate tumors to grow.

But earlier research in Dr. Agus’ laboratory indicated that 2C4 was not limited to targeting HER-2/neu alone and blocked signaling activity among the entire HER network of proteins in both breast and prostate cancer tumors grown in mice. These findings led the investigators to begin the first clinical trial to test the safety and effectiveness of the drug in patients with other types of solid-tumor cancers.

In the study, 21 patients with advanced cancers including breast, prostate, lung, ovarian, colon, pancreas and sarcoma received 2C4 by infusion every three weeks at a dose level ranging between 0.5 and 15 milligrams per kilogram of body weight. Among these patients, 19 completed at least two cycles or six weeks of treatment with 2C4, while two died at the outset of treatment due to complications of their disease. The investigators found that eight or 42 percent of the 19 patients treated with 2C4, responded to treatment either because their tumors shrank over 50 percent, or because their tumors stopped growing for a given time period before their disease progressed. (Cedars-Sinai IRB No. 3691)

Of the 19 patients who received 2C4, three achieved partial remission as measured by shrinkage of their tumors by over 50 percent. These included one patient with ovarian cancer, who received 5 mg/kg of 2C4; one with prostate cancer, who received 15 mg/kg of 2C4; and one patient with a pancreatic neuroendocrine cancer who received 15 mg/kg of 2C4. Two of these patients (ovarian and pancreatic cancer) remain in remission and have been receiving 2C4 for over a year since beginning therapy.

"To see results that show activity in a Phase I safety trial is remarkable, especially since these patients were in the advanced stages of their disease and had no other treatment options available to them," said Dr. Agus. "This is especially exciting as there was little drug related toxicity or side effects associated with this treatment." v In addition, the investigators report that five additional patients’ disease stabilized for at least three months after just two treatment cycles with 2C4. These patients included three with cancers of the prostate, one with non-small cell lung cancer and one with ovarian cancer.

"Targeting a pathway, rather than a tumor type, is an exciting new area in the treatment of cancer, and 2C4 is one of several experimental drugs that show how this treatment strategy can benefit patients," commented Dr. Agus.

A Phase II clinical trial with 2C4 started in May, 2003 at Cedars-Sinai Medical Center to evaluate the effectiveness of the drug in patients with advanced cancers of the prostate, (Cedars-Sinai IRB No. 4100-01) and is scheduled to be open for ovarian cancer patients in June.

Cedars-Sinai Medical Center is one of the largest non-profit academic medical centers in the Western United States. For the fifth straight two-year period, Cedars-Sinai has been named Southern California’s gold standard in health care in an independent survey. Cedars-Sinai is internationally renowned for its diagnostic and treatment capabilities and its broad spectrum of programs and services, as well as breakthroughs in biomedical research and superlative medical education. Named one of the 100 "Most Wired" hospitals in health care in 2001, the Medical Center ranks among the top 10 non-university hospitals in the nation for its research activities.

Kelli Stauning | Cedars-Sinai Medical Center

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>