Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Virtual biopsy’ - A new way to look at cancer

30.05.2003


Scientists are using new imaging technology to help them perform "virtual biopsies," – biological profiles of specific tumors that may help predict a patient’s response to treatment and probability of long-term survival. This whole new realm of imaging is called functional MRI (magnetic resonance imaging), a process that offers insight into a tumor’s character, not just its superficial structure.


In these images of the breast, the lighter and brighter the color, the more aggressive the tumor and the greater the growth of angiogenesis, or the blood vessel growth around them. Functional MRI reveals small islands of the tumor that are resistant to chemotherapy



Using functional MRI, Dr. Michael Knopp, a radiologist and a member of The Ohio State University Comprehensive Cancer Center’s Experimental Therapeutics Program, is studying breast, prostate, pancreatic tumors and others to see if some of their particular biological quirks are related to response to treatment and survival.

Knopp says while X-rays can reveal information about a tumor’s size and shape, that information alone is not enough to help physicians plan and tailor some of the newest treatments. "It’s not what we see, but what we don’t that may be more important."


What X-rays don’t show, but what functional MRI does, says Knopp, includes biological processes like angiogenesis, or blood vessel growth surrounding a tumor. Using MRI and special contrast agents, Knopp is able to determine the permeability, or "leakiness" of the tumor’s support system. Early studies suggest the "leakier" the vessels, the more likely a patient will respond to treatment. "Functional MRI allows us to measure permeability; understanding that characteristic alone can help clinicians better manage the patient’s care," says Knopp.

Functional MRI can also reveal a tumor’s interior landscape, or it’s heterogeneity. Knopp says some tumors are extremely heterogeneous – meaning they are not biologically uniform. Instead, many may contain clusters of "hot spots," clumps of cells that are biologically different and often resistant to treatment. "Functional MRI can help us identify those areas, understand their particular features, and hopefully, design targeted therapies for those specific sites," says Knopp.

In functional MRI, images are made by measuring minute radio waves produced when hydrogen atoms in the body are trapped and vibrate within a magnetic field. The varying intensity of the signal reveals structural features and biological patterns illuminated by injected contrast agents.

"Analyzing data from those images can help us literally see where some chemotherapies are effective, and others are not. We know, for example, that in many cases, treatment with chemotherapy may kill 70 or 80 percent of a cancer, but the remaining tumor cells remain problematic. Now, we can find out exactly where those resistant areas are and we can be more selective and precise with additional treatment," says Knopp. (See http://www.jamesline.com/output/breastimages.htm for an illustration.)

While functional MRI offers new ways to visualize cancer at work, it presents several problems that need to be solved before it becomes routinely useful in clinical care. It is still so new that scientists have yet to agree on standard methodology they will use to visualize what they want to see. That makes comparing studies and findings across multiple centers difficult. In addition, one study alone can generate as many as 700-800 images that need to be synthesized and read collectively for a complete analysis – a process requiring substantial computational power and highly-trained specialists.

"It’s an emerging field, and we think we are just beginning to see what it can do," says Knopp.

Knopp reviewed functional MRI in oncology in an article in the April issue of Molecular Cancer Therapeutics.


His research is supported by the National Cancer Institute,The Wright Center of Innovation and the Ohio Biomedical Research and Technology Transfer Fund.

Michelle Gailiun | EurekAlert!
Further information:
http://www.osumedcenter.edu/

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>