Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Virtual biopsy’ - A new way to look at cancer

30.05.2003


Scientists are using new imaging technology to help them perform "virtual biopsies," – biological profiles of specific tumors that may help predict a patient’s response to treatment and probability of long-term survival. This whole new realm of imaging is called functional MRI (magnetic resonance imaging), a process that offers insight into a tumor’s character, not just its superficial structure.


In these images of the breast, the lighter and brighter the color, the more aggressive the tumor and the greater the growth of angiogenesis, or the blood vessel growth around them. Functional MRI reveals small islands of the tumor that are resistant to chemotherapy



Using functional MRI, Dr. Michael Knopp, a radiologist and a member of The Ohio State University Comprehensive Cancer Center’s Experimental Therapeutics Program, is studying breast, prostate, pancreatic tumors and others to see if some of their particular biological quirks are related to response to treatment and survival.

Knopp says while X-rays can reveal information about a tumor’s size and shape, that information alone is not enough to help physicians plan and tailor some of the newest treatments. "It’s not what we see, but what we don’t that may be more important."


What X-rays don’t show, but what functional MRI does, says Knopp, includes biological processes like angiogenesis, or blood vessel growth surrounding a tumor. Using MRI and special contrast agents, Knopp is able to determine the permeability, or "leakiness" of the tumor’s support system. Early studies suggest the "leakier" the vessels, the more likely a patient will respond to treatment. "Functional MRI allows us to measure permeability; understanding that characteristic alone can help clinicians better manage the patient’s care," says Knopp.

Functional MRI can also reveal a tumor’s interior landscape, or it’s heterogeneity. Knopp says some tumors are extremely heterogeneous – meaning they are not biologically uniform. Instead, many may contain clusters of "hot spots," clumps of cells that are biologically different and often resistant to treatment. "Functional MRI can help us identify those areas, understand their particular features, and hopefully, design targeted therapies for those specific sites," says Knopp.

In functional MRI, images are made by measuring minute radio waves produced when hydrogen atoms in the body are trapped and vibrate within a magnetic field. The varying intensity of the signal reveals structural features and biological patterns illuminated by injected contrast agents.

"Analyzing data from those images can help us literally see where some chemotherapies are effective, and others are not. We know, for example, that in many cases, treatment with chemotherapy may kill 70 or 80 percent of a cancer, but the remaining tumor cells remain problematic. Now, we can find out exactly where those resistant areas are and we can be more selective and precise with additional treatment," says Knopp. (See http://www.jamesline.com/output/breastimages.htm for an illustration.)

While functional MRI offers new ways to visualize cancer at work, it presents several problems that need to be solved before it becomes routinely useful in clinical care. It is still so new that scientists have yet to agree on standard methodology they will use to visualize what they want to see. That makes comparing studies and findings across multiple centers difficult. In addition, one study alone can generate as many as 700-800 images that need to be synthesized and read collectively for a complete analysis – a process requiring substantial computational power and highly-trained specialists.

"It’s an emerging field, and we think we are just beginning to see what it can do," says Knopp.

Knopp reviewed functional MRI in oncology in an article in the April issue of Molecular Cancer Therapeutics.


His research is supported by the National Cancer Institute,The Wright Center of Innovation and the Ohio Biomedical Research and Technology Transfer Fund.

Michelle Gailiun | EurekAlert!
Further information:
http://www.osumedcenter.edu/

More articles from Health and Medicine:

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

nachricht Study advances gene therapy for glaucoma
17.01.2018 | University of Wisconsin-Madison

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials

17.01.2018 | Physics and Astronomy

Fraunhofer HHI receives AIS Technology Innovation Award 2018 for 3D Human Body Reconstruction

17.01.2018 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>