Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Virtual biopsy’ - A new way to look at cancer

30.05.2003


Scientists are using new imaging technology to help them perform "virtual biopsies," – biological profiles of specific tumors that may help predict a patient’s response to treatment and probability of long-term survival. This whole new realm of imaging is called functional MRI (magnetic resonance imaging), a process that offers insight into a tumor’s character, not just its superficial structure.


In these images of the breast, the lighter and brighter the color, the more aggressive the tumor and the greater the growth of angiogenesis, or the blood vessel growth around them. Functional MRI reveals small islands of the tumor that are resistant to chemotherapy



Using functional MRI, Dr. Michael Knopp, a radiologist and a member of The Ohio State University Comprehensive Cancer Center’s Experimental Therapeutics Program, is studying breast, prostate, pancreatic tumors and others to see if some of their particular biological quirks are related to response to treatment and survival.

Knopp says while X-rays can reveal information about a tumor’s size and shape, that information alone is not enough to help physicians plan and tailor some of the newest treatments. "It’s not what we see, but what we don’t that may be more important."


What X-rays don’t show, but what functional MRI does, says Knopp, includes biological processes like angiogenesis, or blood vessel growth surrounding a tumor. Using MRI and special contrast agents, Knopp is able to determine the permeability, or "leakiness" of the tumor’s support system. Early studies suggest the "leakier" the vessels, the more likely a patient will respond to treatment. "Functional MRI allows us to measure permeability; understanding that characteristic alone can help clinicians better manage the patient’s care," says Knopp.

Functional MRI can also reveal a tumor’s interior landscape, or it’s heterogeneity. Knopp says some tumors are extremely heterogeneous – meaning they are not biologically uniform. Instead, many may contain clusters of "hot spots," clumps of cells that are biologically different and often resistant to treatment. "Functional MRI can help us identify those areas, understand their particular features, and hopefully, design targeted therapies for those specific sites," says Knopp.

In functional MRI, images are made by measuring minute radio waves produced when hydrogen atoms in the body are trapped and vibrate within a magnetic field. The varying intensity of the signal reveals structural features and biological patterns illuminated by injected contrast agents.

"Analyzing data from those images can help us literally see where some chemotherapies are effective, and others are not. We know, for example, that in many cases, treatment with chemotherapy may kill 70 or 80 percent of a cancer, but the remaining tumor cells remain problematic. Now, we can find out exactly where those resistant areas are and we can be more selective and precise with additional treatment," says Knopp. (See http://www.jamesline.com/output/breastimages.htm for an illustration.)

While functional MRI offers new ways to visualize cancer at work, it presents several problems that need to be solved before it becomes routinely useful in clinical care. It is still so new that scientists have yet to agree on standard methodology they will use to visualize what they want to see. That makes comparing studies and findings across multiple centers difficult. In addition, one study alone can generate as many as 700-800 images that need to be synthesized and read collectively for a complete analysis – a process requiring substantial computational power and highly-trained specialists.

"It’s an emerging field, and we think we are just beginning to see what it can do," says Knopp.

Knopp reviewed functional MRI in oncology in an article in the April issue of Molecular Cancer Therapeutics.


His research is supported by the National Cancer Institute,The Wright Center of Innovation and the Ohio Biomedical Research and Technology Transfer Fund.

Michelle Gailiun | EurekAlert!
Further information:
http://www.osumedcenter.edu/

More articles from Health and Medicine:

nachricht NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures
17.11.2017 | National Institute of Standards and Technology (NIST)

nachricht High speed video recording precisely measures blood cell velocity
15.11.2017 | ITMO University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>