Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Keeping pace of mobile phone safety

28.05.2003


A new study in the Institute of Physics journal Physics in Medicine and Biology, reveals that the new generation of digital mobile phones can interfere with many types of heart pacemaker. The pacemakers can confuse the signals generated by mobile phones for the heart’’s own electrical signals, causing the pacemaker to malfunction. The authors of the paper, based in the US and Italy, say that newer pacemakers fitted with a ceramic filter are immune and recommend that all manufacturers use these filters.



Electromagnetic interference between mobile phones and cardiac pacemakers has caused concern among physicians since 1994, when it was reported that mobile phones could cause the life-saving implants to malfunction. Early studies found various pacemakers susceptible to interference and the researchers suggested wearers should keep a safe distance from mobile phones. The studies did not look at the cause of the interference, however, so it was not known which pacemaker wearers were most at risk.

Biomedical engineer Giovanni Calcagnini of the Italian Institute of Health in Rome explains that some electrical components of the pacemakers act like an aerial. They can pick up undesirable radio frequency signals and transmit them to the pacemaker’’s sensitive electronic circuits. He and his colleagues at the Center for Devices and Radiological Health of the Food and Drug Administration, in Rockville, Maryland, USA, have investigated exactly how radio frequency signals of the kind used by modern mobile phones are transmitted to the pacemaker’’s internal components.


The researchers tested three versions of the same pacemaker model. The first was equipped with a conventional filter, used to block high-frequency radio signals. The second used the newer ceramic filters connected directly to the internal circuits. The third pacemaker was fitted with both devices.

For each pacemaker, the researchers monitored the pacemaker’’s output signal, which usually helps control the patient’’s heart beat, while exposing the device to the radio signals from mobile phones, including the GSM (Global System for Mobile) phones used throughout Europe.

They report in Physics in Medicine and Biology that the radio frequency signals from GSM phones passed straight through the standard filter device. "This phenomenon could pose a critical problem for people wearing pacemakers because digital mobile phones use extremely low-frequency signals, which can be mistaken for normal heartbeat," explains Calcagnini. "If a pacemaker detects a normal heartbeat it will not function properly and could be very dangerous for the wearer." The pacemaker equipped with the ceramic filter, however, was immune to mobile phone radio frequency signals.

"Most manufacturers have started to equip their new models with ceramic filters," explains Giovanni Calcagnini. "We recommend all new models be equipped with these filters, since it is difficult to change cellphone technology to avoid them producing low-frequency radio frequency signals."

Michelle Cain | alfa
Further information:
http://stacks.iop.org/0031-9155/48/1661

More articles from Health and Medicine:

nachricht Usher syndrome: Gene therapy restores hearing and balance
25.09.2017 | Institut Pasteur

nachricht MRI contrast agent locates and distinguishes aggressive from slow-growing breast cancer
25.09.2017 | Case Western Reserve University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>