Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Keeping pace of mobile phone safety

28.05.2003


A new study in the Institute of Physics journal Physics in Medicine and Biology, reveals that the new generation of digital mobile phones can interfere with many types of heart pacemaker. The pacemakers can confuse the signals generated by mobile phones for the heart’’s own electrical signals, causing the pacemaker to malfunction. The authors of the paper, based in the US and Italy, say that newer pacemakers fitted with a ceramic filter are immune and recommend that all manufacturers use these filters.



Electromagnetic interference between mobile phones and cardiac pacemakers has caused concern among physicians since 1994, when it was reported that mobile phones could cause the life-saving implants to malfunction. Early studies found various pacemakers susceptible to interference and the researchers suggested wearers should keep a safe distance from mobile phones. The studies did not look at the cause of the interference, however, so it was not known which pacemaker wearers were most at risk.

Biomedical engineer Giovanni Calcagnini of the Italian Institute of Health in Rome explains that some electrical components of the pacemakers act like an aerial. They can pick up undesirable radio frequency signals and transmit them to the pacemaker’’s sensitive electronic circuits. He and his colleagues at the Center for Devices and Radiological Health of the Food and Drug Administration, in Rockville, Maryland, USA, have investigated exactly how radio frequency signals of the kind used by modern mobile phones are transmitted to the pacemaker’’s internal components.


The researchers tested three versions of the same pacemaker model. The first was equipped with a conventional filter, used to block high-frequency radio signals. The second used the newer ceramic filters connected directly to the internal circuits. The third pacemaker was fitted with both devices.

For each pacemaker, the researchers monitored the pacemaker’’s output signal, which usually helps control the patient’’s heart beat, while exposing the device to the radio signals from mobile phones, including the GSM (Global System for Mobile) phones used throughout Europe.

They report in Physics in Medicine and Biology that the radio frequency signals from GSM phones passed straight through the standard filter device. "This phenomenon could pose a critical problem for people wearing pacemakers because digital mobile phones use extremely low-frequency signals, which can be mistaken for normal heartbeat," explains Calcagnini. "If a pacemaker detects a normal heartbeat it will not function properly and could be very dangerous for the wearer." The pacemaker equipped with the ceramic filter, however, was immune to mobile phone radio frequency signals.

"Most manufacturers have started to equip their new models with ceramic filters," explains Giovanni Calcagnini. "We recommend all new models be equipped with these filters, since it is difficult to change cellphone technology to avoid them producing low-frequency radio frequency signals."

Michelle Cain | alfa
Further information:
http://stacks.iop.org/0031-9155/48/1661

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>