Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Keeping pace of mobile phone safety

28.05.2003


A new study in the Institute of Physics journal Physics in Medicine and Biology, reveals that the new generation of digital mobile phones can interfere with many types of heart pacemaker. The pacemakers can confuse the signals generated by mobile phones for the heart’’s own electrical signals, causing the pacemaker to malfunction. The authors of the paper, based in the US and Italy, say that newer pacemakers fitted with a ceramic filter are immune and recommend that all manufacturers use these filters.



Electromagnetic interference between mobile phones and cardiac pacemakers has caused concern among physicians since 1994, when it was reported that mobile phones could cause the life-saving implants to malfunction. Early studies found various pacemakers susceptible to interference and the researchers suggested wearers should keep a safe distance from mobile phones. The studies did not look at the cause of the interference, however, so it was not known which pacemaker wearers were most at risk.

Biomedical engineer Giovanni Calcagnini of the Italian Institute of Health in Rome explains that some electrical components of the pacemakers act like an aerial. They can pick up undesirable radio frequency signals and transmit them to the pacemaker’’s sensitive electronic circuits. He and his colleagues at the Center for Devices and Radiological Health of the Food and Drug Administration, in Rockville, Maryland, USA, have investigated exactly how radio frequency signals of the kind used by modern mobile phones are transmitted to the pacemaker’’s internal components.


The researchers tested three versions of the same pacemaker model. The first was equipped with a conventional filter, used to block high-frequency radio signals. The second used the newer ceramic filters connected directly to the internal circuits. The third pacemaker was fitted with both devices.

For each pacemaker, the researchers monitored the pacemaker’’s output signal, which usually helps control the patient’’s heart beat, while exposing the device to the radio signals from mobile phones, including the GSM (Global System for Mobile) phones used throughout Europe.

They report in Physics in Medicine and Biology that the radio frequency signals from GSM phones passed straight through the standard filter device. "This phenomenon could pose a critical problem for people wearing pacemakers because digital mobile phones use extremely low-frequency signals, which can be mistaken for normal heartbeat," explains Calcagnini. "If a pacemaker detects a normal heartbeat it will not function properly and could be very dangerous for the wearer." The pacemaker equipped with the ceramic filter, however, was immune to mobile phone radio frequency signals.

"Most manufacturers have started to equip their new models with ceramic filters," explains Giovanni Calcagnini. "We recommend all new models be equipped with these filters, since it is difficult to change cellphone technology to avoid them producing low-frequency radio frequency signals."

Michelle Cain | alfa
Further information:
http://stacks.iop.org/0031-9155/48/1661

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>