Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Keeping pace of mobile phone safety

28.05.2003


A new study in the Institute of Physics journal Physics in Medicine and Biology, reveals that the new generation of digital mobile phones can interfere with many types of heart pacemaker. The pacemakers can confuse the signals generated by mobile phones for the heart’’s own electrical signals, causing the pacemaker to malfunction. The authors of the paper, based in the US and Italy, say that newer pacemakers fitted with a ceramic filter are immune and recommend that all manufacturers use these filters.



Electromagnetic interference between mobile phones and cardiac pacemakers has caused concern among physicians since 1994, when it was reported that mobile phones could cause the life-saving implants to malfunction. Early studies found various pacemakers susceptible to interference and the researchers suggested wearers should keep a safe distance from mobile phones. The studies did not look at the cause of the interference, however, so it was not known which pacemaker wearers were most at risk.

Biomedical engineer Giovanni Calcagnini of the Italian Institute of Health in Rome explains that some electrical components of the pacemakers act like an aerial. They can pick up undesirable radio frequency signals and transmit them to the pacemaker’’s sensitive electronic circuits. He and his colleagues at the Center for Devices and Radiological Health of the Food and Drug Administration, in Rockville, Maryland, USA, have investigated exactly how radio frequency signals of the kind used by modern mobile phones are transmitted to the pacemaker’’s internal components.


The researchers tested three versions of the same pacemaker model. The first was equipped with a conventional filter, used to block high-frequency radio signals. The second used the newer ceramic filters connected directly to the internal circuits. The third pacemaker was fitted with both devices.

For each pacemaker, the researchers monitored the pacemaker’’s output signal, which usually helps control the patient’’s heart beat, while exposing the device to the radio signals from mobile phones, including the GSM (Global System for Mobile) phones used throughout Europe.

They report in Physics in Medicine and Biology that the radio frequency signals from GSM phones passed straight through the standard filter device. "This phenomenon could pose a critical problem for people wearing pacemakers because digital mobile phones use extremely low-frequency signals, which can be mistaken for normal heartbeat," explains Calcagnini. "If a pacemaker detects a normal heartbeat it will not function properly and could be very dangerous for the wearer." The pacemaker equipped with the ceramic filter, however, was immune to mobile phone radio frequency signals.

"Most manufacturers have started to equip their new models with ceramic filters," explains Giovanni Calcagnini. "We recommend all new models be equipped with these filters, since it is difficult to change cellphone technology to avoid them producing low-frequency radio frequency signals."

Michelle Cain | alfa
Further information:
http://stacks.iop.org/0031-9155/48/1661

More articles from Health and Medicine:

nachricht Antibiotic effective against drug-resistant bacteria in pediatric skin infections
17.02.2017 | University of California - San Diego

nachricht Tiny magnetic implant offers new drug delivery method
14.02.2017 | University of British Columbia

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>