Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel flu vaccine shows promise in mice

27.05.2003


If successful in humans, vaccine could eliminate annual flu shot



Globally, the influenza virus, or flu, is thought to cause between three and five million cases of severe illness and between 250,000 and 500,000 deaths annually, according to the World Health Organization. New strains of the virus emerge each year, so that the U.S. Centers for Disease Control and other public health services must produce and distribute a new vaccine against the new flu strains each year. And each year, people seeking to avoid a flu infection must arrange to receive a flu shot - rarely a pleasant experience - from their doctor or other health-care provider. Also, the effectiveness of the vaccine is known to decline in the elderly, a population for whom flu infections can be particularly dangerous.

A new prototype vaccine developed by researchers at The Wistar Institute, however, might be able to protect recipients not only against this year’s strains of the virus, but also against those yet to come, possibly eliminating the need for an annual shot. In fact, because the vaccine would be administered as a nasal spray, it could eliminate the need for a shot of any kind. A report on the new findings appears in the June 2 issue of the journal Vaccine.


"Current vaccines are quite effective, but they are based on regions of the virus that mutate rapidly, so health officials are constantly faced with the problem of updating the vaccines," says Walter Gerhard, M.D., senior author on the Vaccine report and a professor in the immunology program at The Wistar Institute. "A vaccine directed against a more stable region of the virus would offer important public-health advantages, and this is what we are hoping to be able to develop."

Current flu vaccines trigger an immune response to a pair of prominent viral-coat proteins that mutate constantly, which is the reason last year’s flu vaccine is ineffective against this year’s flu strains. The experimental vaccine contains an engineered peptide that mimics a third, smaller viral-coat protein called M2 that remains largely constant from year to year.

Mice vaccinated with the vaccine generated a strong antibody response against M2. In fact, the mice generated a more powerful antibody response to the vaccine than to infections by the flu virus itself, according to Gerhard.

"We saw a significant antibody response to our peptide vaccine," he says. "Actually, the response was much stronger than what we saw in mice recovering from infections, which was surprising. This may be meaningful in terms of the potential effectiveness of the vaccine as we go forward."

The experimental vaccine was administered twice intranasally to mice. After vaccination, a steep rise in M2-specific antibodies was seen in blood samples from the mice, and the mice exhibited significant resistance to viral replication in the respiratory tract.

Ongoing experiments in the Gerhard laboratory are exploring the questions of how and why the new flu vaccine is able to produce a stronger antibody response than infections, which are generally considered the best way to generate resistance to any pathogen.

Also, Gerhard is looking into whether the M2 element of the virus might begin to mutate in the presence of the anti-M2 antibodies generated by the new vaccine. His concern is that the observed viral stability in the M2 region of the flu virus may simply be a reflection of the fact that the immune system does not mount a vigorous response to it, so that evolutionary pressure on that region of the virus is not great.

"Among human influenza virus strains, there is little variation in the M2 region," Gerhard says. "That could be due to the fact that humans do not generate a significant antibody response to it, so that the virus does not need to change to escape those antibodies."

Wistar associate professor Laszlo Otvos, Jr., Ph.D., collaborated on the study. Krystyna Mozdzanowska was the lead author. The remaining coauthors, all Wistar-based, are JingQi Feng, Mark Eid, Goran Kragol, and Mare Cudic.

Support for the research was provided by the National Institutes of Health.


The Wistar Institute is an independent nonprofit biomedical research institution dedicated to discovering the causes and cures for major diseases, including cancer, cardiovascular disease, autoimmune disorders, and infectious diseases. Founded in 1892 as the first institution of its kind in the nation, The Wistar Institute today is a National Cancer Institute-designated Cancer Center - one of only eight focused on basic research. Discoveries at Wistar have led to the development of vaccines for such diseases as rabies and rubella, the identification of genes associated with breast, lung, and prostate cancer, and the development of monoclonal antibodies and other significant research technologies and tools.

Franklin Hoke | EurekAlert!
Further information:
http://www.wistar.upenn.edu/

More articles from Health and Medicine:

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>