Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MDCT is more accurate than X-rays in depicting spine fractures in severe trauma patients

27.05.2003


Eliminating X-ray exam could save patients time and money



When every minute counts in assessing and treating injuries in patients who have sustained severe trauma, multidetector-row computed tomography (MDCT) is more effective than conventional radiographs (x-rays) in helping radiologists pinpoint spine fractures, according to a new study appearing in the June issue of the journal Radiology.

The study was conducted at Lausanne University Hospital in Switzerland, to determine if MDCT, an advanced CT scan that includes an intravenous contrast solution, could replace conventional x-rays in the diagnosis of thoracolumbar (thorax or lumbar) spine fractures. Researchers found that MDCT had an accuracy rate nearly three times that of conventional radiography.


Patients admitted to a hospital’s emergency department for severe trauma often undergo both x-rays and MDCT. Physicians use MDCT, which provides many images of the body from different angles, to screen for traumatic lesions affecting the vessels, lungs, spleen and kidney, and for the presence of blood.

"We found that performing both tests on severe trauma patients does not improve diagnosis," said the study’s lead author, Max Wintermark, M.D., clinical and research fellow in the department of diagnostic and interventional radiology at Lausanne University Hospital. "Results showed that MDCT depicted more spine fractures than were shown on plain film x-rays."

According to the National Spinal Cord Injury Association, approximately 7,800 spinal cord injuries occur in the United States each year, primarily caused by motor vehicle accidents, acts of violence and falls. Given the potential seriousness of this type of injury, all trauma patients must be screened and assessed within minutes after being admitted to the emergency department.

"Using MDCT alone provides an accurate and faster diagnosis," Dr. Wintermark said. "Physicians can start treatment more quickly, which will improve the outcome for the patient."

Imaging is performed to provide an accurate screening to rule out unstable spine fractures, which are more serious and can lead to permanent spinal cord injuries or paralysis. In severe trauma cases, patients are often unconscious and cannot tell physicians where there is pain or provide any medical history. The physician must rely on imaging to take pictures of the injuries.

The study included 100 consecutive adults with a median age of 34 who had sustained severe trauma and underwent both conventional x-rays and MDCT at the hospital in 2001. The x-rays were reviewed independently by three radiologists and two orthopedic surgeons, and the MDCT findings were reviewed by the three radiologists. The reviewers documented the presence, location and stability of fractures and assessed the quality of the imaging methods. They also recorded the time it took to perform the procedures.

Out of the 100 patients, 26 had a total of 67 fractured vertebrae. Twelve patients had unstable spine fractures. The researchers found that MDCT exhibited 97.2 percent sensitivity in depicting the unstable spine fractures, while conventional x-rays had a sensitivity of only 33.3 percent. The average time to perform the x-ray exam was 33 minutes, compared with 40 minutes for the MDCT exam, or a total of 73 minutes for both procedures.

Using MDCT alone, physicians could potentially retain the same level of diagnostic accuracy and cut the total examination time nearly in half. In addition, foregoing the x-ray exam would result in cost savings to the patient and insurance provider. The cost of x-rays for each patient in the study averaged $145.

"Another benefit of eliminating x-rays as part of the screening in severe trauma patients is that it spares radiation to the patient," Dr. Wintermark said. This can be an issue with young female patients who are of childbearing age and would be exposed to unnecessary radiation in the thoracic, pelvic and spine areas.

Dr. Wintermark noted that these conclusions apply only to patients who have sustained severe trauma and are admitted to large university hospitals or level 1 trauma centers. Patients with back pain or lesser injuries can usually be effectively diagnosed using only conventional x-rays.



Radiology is a monthly scientific journal devoted to clinical radiology and allied sciences. The journal is edited by Anthony V. Proto, M.D., School of Medicine, Virginia Commonwealth University, Richmond, Va. Radiology is owned and published by the Radiological Society of North America Inc. (http://radiology.rsnajnls.org)

The Radiological Society of North America (RSNA) is an association of more than 33,000 radiologists, radiation oncologists and related scientists committed to promoting excellence through education and by fostering research, with the ultimate goal of improving patient care. The Society’s headquarters are located at 820 Jorie Blvd., Oak Brook, Ill. 60523-2251. (http://www.rsna.org)

"Thoracolumbar Spine Fractures in Patients Who Have Sustained Severe Trauma: Depiction with Multi-detector Row CT." Collaborating with Dr. Wintermark on this study were Elyazid Mouhsine, M.D., Nicolas Theumann, M.D., Philippe Mordasini, M.D., Guy van Melle, Ph.D., Pierre F. Leyvraz, M.D., and Pierre Schnyder, M.D.

Maureen Morley | EurekAlert!
Further information:
http://radiology.rsnajnls.org
http://www.rsna.org

More articles from Health and Medicine:

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

nachricht Highly precise wiring in the Cerebral Cortex
21.09.2017 | Max-Planck-Institut für Hirnforschung

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>