Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Emory University researchers uncover novel self-assembly of Alzheimer’s amyloid fibrils

26.05.2003


Researchers at Emory University and Argonne National Laboratory have discovered a new method to manipulate the self-assembly and formation of amyloid fibrils, a major component of brain plaques associated with Alzheimer’s disease, thereby opening new avenues for examination of their formation and for the construction of robust nanotubes that have potential applications in research, industry and medicine.

Certain short amino acid chains, the building blocks of proteins, are capable of self-assembly into the disease-causing amyloid fibrils of Alzheimer’s. Emory biochemistry professor David Lynn and his colleagues have now enticed these amyloid peptides to self-assemble into well-defined nanotubes 15 billionths of a meter across. Such nanotubes can now serve as minute scaffolds to build nanotechnological devices with potential applications in many fields. These findings are published in the May 21 issue of the Journal of the American Chemical Society in their paper "Exploiting Amyloid Fibril Lamination for Nanotube Self-Assembly."

"We took what we know about amyloid fibril self-assembly, and used that information to construct novel, self-assembling nanotubes. The creation of these new structures will in turn teach us more about the physical properties of amyloids and the pathways to their formation, which puts us in a better position to understand why they are so damaging and cause disease," says Lynn.



The discovery underscores the potential of the emerging field of "synthetic biology," demonstrating the use of self-assembling elements that nature goes to great lengths to avoid, and converting them to new functional materials, Lynn says.

"Nature goes to extreme measures to keep these amyloids from forming, but nature still hasn’t figured out a way on its own to totally control the formation of them. What we have uncovered is a way to control and manipulate the amyloid in a way that nature can’t, so that it acts differently and takes on a new form as a self-assembling nanotube that has many applications for nanotechnology."

Lynn, Asa Griggs Candler Professor of Chemistry and Biology, works in the areas of biomolecular chemistry, molecular evolution and chemical biology. Lynn’s research in biological chemistry focuses on the spontaneous self-assembly of biological structures, including protein folding, nucleic acid assembly and the organogenesis of multicellular organisms--the basis of the energies that control self-assembly.

Lynn’s research team includes graduate student Kun Lu; Vincent Conticello, professor of biomaterials at Emory; and Jaby Jacob and Pappannan Thiyagarajan of Argonne National Laboratory.

Deb Hammacher | EurekAlert!
Further information:
http://www.emory.edu/

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>