Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Inner ear of chicken yields clues to human deafness and balance disorders

23.05.2003


Scientists at Washington University School of Medicine in St. Louis have gained new insights into the causes of human deafness and balance disorders by studying the inner ear of chickens.



The research provides new clues as to why birds can replace critical cells in the inner ear and humans cannot. Loss of these so-called sensory hair cells in humans is a leading cause of deafness and impaired balance due to aging, infectious disease and exposure to loud noise. The study will be published in the June 1 issue of the journal Human Molecular Genetics and appears online today.

The team measured the activity of more than 1,800 genes in sensory cells from two regions of the chicken inner ear: the cochlea, where sound is converted into nerve impulses, and the utricle, where balance is sensed. The utricle of birds replaces sensory cells regularly, while the cochlea replaces them when they die. The investigators discovered more than 100 significant differences between the two regions.


The findings provide new insights into the causes of deafness due to aging and the loss of these essential cells. They also may help improve knowledge of how the inner ear develops.

“Ultimately, we hope our work will lead to some form of therapy that will replace these cells when they are lost,” says lead investigator Michael Lovett, Ph.D., professor of genetics and of pediatrics and joint director of the Division of Human Genetics. “We are born with only a few thousand sensory hair cells in each ear, and to maintain hearing and balance we have to keep them for our entire lives.”

At least 30 million Americans suffer from significant hearing loss and balance disorders, Lovett says. One-third of people above age 65 and half of people above age 75 have significant hearing loss. About 80 percent of these problems result from the loss of, or damage to, sensory hair cells. “The cochlea and utricle function nearly identically in birds and humans,” says Mark E. Warchol, Ph.D., associate research scientist at the Central Institute for the Deaf and a research associate professor of otolaryngology and of anatomy and neurobiology at Washington University and a co-author of the paper. “But key differences exist between them allow birds to regenerate these cells. If we can understand those differences, perhaps we can learn how to replace lost or damaged sensory hair cells in humans.”

The investigators used microarray technology to compare the activity of genes from the cochlea and utricle of chickens. Microarrays allow the comparison of thousands of genes at one time to determine which genes are active. Lovett’s group constructed one microarray containing 426 human genes known to be involved in hearing or to be active in the inner ear. A second microarray held 1,422 human genes for transcription factors, proteins that latch onto genes to turn them on or off. The investigators had to use human genes because few genes in the chicken have been identified. (That situation will change with the mapping of the chicken genome, a project now under way at Washington University’s Genome Sequencing Center.)

Warchol’s laboratory isolated and grew the chicken sensory hair cells, then Lovett’s group isolated messenger RNA from these few thousand cells. Messenger RNA is a shortened copy of an active gene, but there are only tiny quantities in the relatively small number of hair cells from each ear. Lovett’s group therefore used special amplification methods that they developed to make multiple copies of each messenger RNA. Each copy of a messenger RNA clings to its corresponding gene on a microarray and thereby labels the gene with its fluorescent dye.

The microarrays used by Lovett and his colleagues showed that about 600 transcription-factor genes were active to some degree in both the chicken cochlea and utricle, and that about 40 were active in only one area. They also identified 20 inner-ear genes and more than 80 transcription-factor genes that differed in their activity levels between the two areas.

Among the study’s surprising findings was that a gene known as GATA3 may be involved in orienting sensory hair cells in the utricle, and that the gene for beta amyloid, which is implicated in the death of neurons during Alzheimer’s disease, is active in the chicken utricle.

“We have no idea yet how important or significant this may be,” Warchol says, “but like much of what we found in this study, it’s a new lead that we want to pursue.”


###

Hawkins RD, Bashiardes S, Helms CA, Hu L, Saccone NL, Warchol ME, Lovett M. Gene expression differences in quiescent versus regenerating hair cells of avian sensory epithelia: implications for human hearing and balance disorders. Human Molecular Genetics, June 1, 2003.

A grant from the National Organization for Hearing Research Foundation supported this research.

The full-time and volunteer faculty of Washington University School of Medicine are the physicians and surgeons of Barnes-Jewish and St. Louis Children’s hospitals. The School of Medicine is one of the leading medical research, teaching and patient-care institutions in the nation. Through its affiliations with Barnes-Jewish and St. Louis Children’s hospitals, the School of Medicine is linked to BJC HealthCare.

Darrell E. Ward | EurekAlert!
Further information:
http://medinfo.wustl.edu/

More articles from Health and Medicine:

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Better equipped in the fight against lung cancer
16.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>