Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Inner ear of chicken yields clues to human deafness and balance disorders

23.05.2003


Scientists at Washington University School of Medicine in St. Louis have gained new insights into the causes of human deafness and balance disorders by studying the inner ear of chickens.



The research provides new clues as to why birds can replace critical cells in the inner ear and humans cannot. Loss of these so-called sensory hair cells in humans is a leading cause of deafness and impaired balance due to aging, infectious disease and exposure to loud noise. The study will be published in the June 1 issue of the journal Human Molecular Genetics and appears online today.

The team measured the activity of more than 1,800 genes in sensory cells from two regions of the chicken inner ear: the cochlea, where sound is converted into nerve impulses, and the utricle, where balance is sensed. The utricle of birds replaces sensory cells regularly, while the cochlea replaces them when they die. The investigators discovered more than 100 significant differences between the two regions.


The findings provide new insights into the causes of deafness due to aging and the loss of these essential cells. They also may help improve knowledge of how the inner ear develops.

“Ultimately, we hope our work will lead to some form of therapy that will replace these cells when they are lost,” says lead investigator Michael Lovett, Ph.D., professor of genetics and of pediatrics and joint director of the Division of Human Genetics. “We are born with only a few thousand sensory hair cells in each ear, and to maintain hearing and balance we have to keep them for our entire lives.”

At least 30 million Americans suffer from significant hearing loss and balance disorders, Lovett says. One-third of people above age 65 and half of people above age 75 have significant hearing loss. About 80 percent of these problems result from the loss of, or damage to, sensory hair cells. “The cochlea and utricle function nearly identically in birds and humans,” says Mark E. Warchol, Ph.D., associate research scientist at the Central Institute for the Deaf and a research associate professor of otolaryngology and of anatomy and neurobiology at Washington University and a co-author of the paper. “But key differences exist between them allow birds to regenerate these cells. If we can understand those differences, perhaps we can learn how to replace lost or damaged sensory hair cells in humans.”

The investigators used microarray technology to compare the activity of genes from the cochlea and utricle of chickens. Microarrays allow the comparison of thousands of genes at one time to determine which genes are active. Lovett’s group constructed one microarray containing 426 human genes known to be involved in hearing or to be active in the inner ear. A second microarray held 1,422 human genes for transcription factors, proteins that latch onto genes to turn them on or off. The investigators had to use human genes because few genes in the chicken have been identified. (That situation will change with the mapping of the chicken genome, a project now under way at Washington University’s Genome Sequencing Center.)

Warchol’s laboratory isolated and grew the chicken sensory hair cells, then Lovett’s group isolated messenger RNA from these few thousand cells. Messenger RNA is a shortened copy of an active gene, but there are only tiny quantities in the relatively small number of hair cells from each ear. Lovett’s group therefore used special amplification methods that they developed to make multiple copies of each messenger RNA. Each copy of a messenger RNA clings to its corresponding gene on a microarray and thereby labels the gene with its fluorescent dye.

The microarrays used by Lovett and his colleagues showed that about 600 transcription-factor genes were active to some degree in both the chicken cochlea and utricle, and that about 40 were active in only one area. They also identified 20 inner-ear genes and more than 80 transcription-factor genes that differed in their activity levels between the two areas.

Among the study’s surprising findings was that a gene known as GATA3 may be involved in orienting sensory hair cells in the utricle, and that the gene for beta amyloid, which is implicated in the death of neurons during Alzheimer’s disease, is active in the chicken utricle.

“We have no idea yet how important or significant this may be,” Warchol says, “but like much of what we found in this study, it’s a new lead that we want to pursue.”


###

Hawkins RD, Bashiardes S, Helms CA, Hu L, Saccone NL, Warchol ME, Lovett M. Gene expression differences in quiescent versus regenerating hair cells of avian sensory epithelia: implications for human hearing and balance disorders. Human Molecular Genetics, June 1, 2003.

A grant from the National Organization for Hearing Research Foundation supported this research.

The full-time and volunteer faculty of Washington University School of Medicine are the physicians and surgeons of Barnes-Jewish and St. Louis Children’s hospitals. The School of Medicine is one of the leading medical research, teaching and patient-care institutions in the nation. Through its affiliations with Barnes-Jewish and St. Louis Children’s hospitals, the School of Medicine is linked to BJC HealthCare.

Darrell E. Ward | EurekAlert!
Further information:
http://medinfo.wustl.edu/

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>