Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Inner ear of chicken yields clues to human deafness and balance disorders

23.05.2003


Scientists at Washington University School of Medicine in St. Louis have gained new insights into the causes of human deafness and balance disorders by studying the inner ear of chickens.



The research provides new clues as to why birds can replace critical cells in the inner ear and humans cannot. Loss of these so-called sensory hair cells in humans is a leading cause of deafness and impaired balance due to aging, infectious disease and exposure to loud noise. The study will be published in the June 1 issue of the journal Human Molecular Genetics and appears online today.

The team measured the activity of more than 1,800 genes in sensory cells from two regions of the chicken inner ear: the cochlea, where sound is converted into nerve impulses, and the utricle, where balance is sensed. The utricle of birds replaces sensory cells regularly, while the cochlea replaces them when they die. The investigators discovered more than 100 significant differences between the two regions.


The findings provide new insights into the causes of deafness due to aging and the loss of these essential cells. They also may help improve knowledge of how the inner ear develops.

“Ultimately, we hope our work will lead to some form of therapy that will replace these cells when they are lost,” says lead investigator Michael Lovett, Ph.D., professor of genetics and of pediatrics and joint director of the Division of Human Genetics. “We are born with only a few thousand sensory hair cells in each ear, and to maintain hearing and balance we have to keep them for our entire lives.”

At least 30 million Americans suffer from significant hearing loss and balance disorders, Lovett says. One-third of people above age 65 and half of people above age 75 have significant hearing loss. About 80 percent of these problems result from the loss of, or damage to, sensory hair cells. “The cochlea and utricle function nearly identically in birds and humans,” says Mark E. Warchol, Ph.D., associate research scientist at the Central Institute for the Deaf and a research associate professor of otolaryngology and of anatomy and neurobiology at Washington University and a co-author of the paper. “But key differences exist between them allow birds to regenerate these cells. If we can understand those differences, perhaps we can learn how to replace lost or damaged sensory hair cells in humans.”

The investigators used microarray technology to compare the activity of genes from the cochlea and utricle of chickens. Microarrays allow the comparison of thousands of genes at one time to determine which genes are active. Lovett’s group constructed one microarray containing 426 human genes known to be involved in hearing or to be active in the inner ear. A second microarray held 1,422 human genes for transcription factors, proteins that latch onto genes to turn them on or off. The investigators had to use human genes because few genes in the chicken have been identified. (That situation will change with the mapping of the chicken genome, a project now under way at Washington University’s Genome Sequencing Center.)

Warchol’s laboratory isolated and grew the chicken sensory hair cells, then Lovett’s group isolated messenger RNA from these few thousand cells. Messenger RNA is a shortened copy of an active gene, but there are only tiny quantities in the relatively small number of hair cells from each ear. Lovett’s group therefore used special amplification methods that they developed to make multiple copies of each messenger RNA. Each copy of a messenger RNA clings to its corresponding gene on a microarray and thereby labels the gene with its fluorescent dye.

The microarrays used by Lovett and his colleagues showed that about 600 transcription-factor genes were active to some degree in both the chicken cochlea and utricle, and that about 40 were active in only one area. They also identified 20 inner-ear genes and more than 80 transcription-factor genes that differed in their activity levels between the two areas.

Among the study’s surprising findings was that a gene known as GATA3 may be involved in orienting sensory hair cells in the utricle, and that the gene for beta amyloid, which is implicated in the death of neurons during Alzheimer’s disease, is active in the chicken utricle.

“We have no idea yet how important or significant this may be,” Warchol says, “but like much of what we found in this study, it’s a new lead that we want to pursue.”


###

Hawkins RD, Bashiardes S, Helms CA, Hu L, Saccone NL, Warchol ME, Lovett M. Gene expression differences in quiescent versus regenerating hair cells of avian sensory epithelia: implications for human hearing and balance disorders. Human Molecular Genetics, June 1, 2003.

A grant from the National Organization for Hearing Research Foundation supported this research.

The full-time and volunteer faculty of Washington University School of Medicine are the physicians and surgeons of Barnes-Jewish and St. Louis Children’s hospitals. The School of Medicine is one of the leading medical research, teaching and patient-care institutions in the nation. Through its affiliations with Barnes-Jewish and St. Louis Children’s hospitals, the School of Medicine is linked to BJC HealthCare.

Darrell E. Ward | EurekAlert!
Further information:
http://medinfo.wustl.edu/

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>