Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein fragment found to help improve chemotherapy

21.05.2003


USC researchers find ways to improve effectiveness against tumors



Researchers from the Keck School of Medicine of the University of Southern California have isolated a protein fragment derived from the cancer immunotherapy drug interleukin 2 (IL-2) that seems to enhance the uptake of chemotherapeutic agents into tumors.

In fact, says Alan Epstein, M.D., Ph.D., professor of pathology at the Keck School of Medicine, when this patented protein fragment is attached to a tumor-targeting antibody, it can prompt tumors to soak up more than 300 percent the normal amount of chemotherapy drugs. It does this, Epstein says, by making the tumor’s blood vessel walls more "open" or permeable to the drugs. (Blood vessel walls are made of epithelial cells that are usually tightly joined together; when the junctions between those cells loosen up, it becomes easier for molecules to enter or leave the bloodstream.)


This work was described in a paper being published in the May 21, 2003 issue of the Journal of the National Cancer Institute.

The interleukins are part of a class of proteins called cytokines, which play a role in the human immune response. It’s been hoped that interleukin 2 (IL-2) and its brethren might play a central role in cancer immunotherapy-battling cancer by revving up the immune system. Unfortunately, IL-2 can only be tolerated in small doses by the body. Taken at levels that would take advantage of its therapeutic value, it causes wide-spread edema and other problems due to blood vessel leakiness.

While seeking the cause of this leakiness, Epstein and his Keck School of Medicine colleagues isolated a stretch of 37 amino acids on the IL-2 protein; this sequence, he says, "is responsible for 100 percent of the vasopermeability." Dubbed PEP, for permeability-enhancing peptide, the molecule is now being commercially developed by Peregrine Pharmaceuticals of Tustin, Calif.

Having determined that PEP is indeed a permeability enhancer, Epstein and his colleagues took their exploration a step further: They transplanted mice with human tumor cells and pretreated them with monoclonal antibodies coupled with PEP.

When these mice and control mice were later injected with a radiolabeled tracer antibody or drug, there was a three to four fold increase in the amount of the antibody taken up by the tumors of the pretreated mice than those of the control mice.

"We’ve showed that you can use PEP to induce selective and reversible blood vessel permeability at the tumor site to get better drug uptake," says Epstein. "This may turn out to be a hugely important tool in cancer therapy."

The next step, he says, "is to try to get this product ready to test in human patients."


###
This work was supported by grants from the National Cancer Institute, Peregrine Pharmaceuticals, Inc. and Cancer Therapeutics Laboratories.

Alan L. Epstein, Myra Mizokami, Jiali Li, Peisheng Hu, Leslie A. Khawli, "Identification of a Protein Fragment of Interleukin 2 Responsible for Vasopermeability." Journal of the National Cancer Institute, Vol. 95, No. 10, May 21, 2003, pp. 741-749.

Jon Weiner | EurekAlert!
Further information:
http://www.usc.edu/

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>