Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Camera pill reveals damage from anti-inflammatory drugs


Non-steroidal anti-inflammatory drugs (NSAIDs) may damage more of the intestine than previously thought, according to images taken by a swallowable, capsule-size camera pill used in a Baylor College of Medicine study.

According to the study, announced today at the Digestive Disease Week 2003 conference in Orlando, capsule endoscopy detected NSAIDs-related injury in the small bowel, an area of the gastrointestinal tract unreachable by other diagnostic tools such as endoscopes. The tool detected small bowel erosions in 62 percent of NSAID users compared to 5 percent of non-NSAID users.

"More than 100 million prescriptions for NSAIDS are written annually in the United States," said Dr. David Graham, lead author of the study and a professor of medicine and molecular virology at Baylor in Houston and chief of the gastroenterology section of Houston VA Medical Center. "The study shows that the patients who take NSAIDs regularly have an increased risk of small intestinal mucosal ulceration and bleeding."

NSAIDs are medications which reduce pain and inflammation over time. The drugs work by affecting chemicals in the body which cause inflammation, the prostaglandins. The same group of chemicals are also in the stomach, leading NSAIDs to cause indigestion, and possibly duodenal or stomach ulceration.

The capsule endoscope, developed by Given Imaging, allows medical professionals to view the entire small intestine. The system uses a disposable miniature video camera contained in a capsule, which the patient swallows. The capsule passes through the digestive tract, transmitting color images, without interfering with the patient’s normal activities. Capsule endoscopy diagnoses a range of diseases of the small intestine including Crohn’s Disease, Celiac disease, benign and malignant tumors of the small intestine, vascular disorders, medication related small bowel injury and pediatric small bowel disorders.

The study enrolled 40 patients, with a mean age of 49.5, who had arthritis including osteoarthritis, rheumatoid arthritis and gout. Twenty patients took NSAIDS daily for three months. Twenty patients took acetaminophen alone or nothing at all. All patients fasted overnight and underwent capsule endoscopy. The pylorus, the sphincter muscle that controls the lower opening of the stomach where it empties into the upper part of the small intestine, was marked on each video. Two investigators who were not told which therapy the participants received, reviewed each video beginning after the pylorus, where the small intestine starts.

Severe injury to the small bowel was seen in 23 percent of NSAID users compared to no severe injury in the controls. Severe damage was associated with high doses of indomethacin, naproxen, oxyprozocin and ibuprofen.

"This is a significant finding and suggests the need for periodic diagnostic monitoring with capsule endoscopy of patients who take NSAIDs regularly," Graham said.

Anissa Anderson Orr | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Inflammation Triggers Unsustainable Immune Response to Chronic Viral Infection
24.10.2016 | Universität Basel

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>