Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Designer Molecules – Engineering a Better Approach to HIV Treatment

20.05.2003


Ravi Kane Receives Grant From the National Institutes of Health



Ravi Kane, assistant professor of chemical engineering at Rensselaer Polytechnic Institute, is designing brand-new molecules that may one day fend off an HIV infection. Bolstering the body’s molecular defenses is a novel method that may lead to highly effective treatments for HIV, the virus that can lead to AIDS.

Kane has received a two-year, $150,000 grant from the National Institute of Allergy and Infectious Disease (NIAID), a division of the National Institutes of Health, to pursue research into this promising HIV treatment.


The Trouble With Today’s Treatments

Today’s FDA-approved HIV treatments take aim at the virus itself. Drugs used in the standard “cocktail” regimens, including reverse transcriptase and protease inhibitors, are intended to disable HIV at two stages in its replication process. Such treatments are undoubtedly lifesaving for many people; however, they deliver varying success due to the ongoing emergence of resistant HIV strains. These drugs are also expensive and lead to a host of side-effects, including lipodystrophy (abnormal fat accumulation or loss in certain parts of the body) and dangerously high cholesterol and triglyceride levels.

A New Approach: Defensive Maneuvers

Kane’s research team at Rensselaer, and Albany Medical Center collaborators Kathy Stellrecht and Dennis Metzger, are trying a different approach. The Rensselaer team is designing molecules that block the particular receptors (located on human cells) that act as the docking sites where the majority of HIV strains make their first attempt at infiltration. These receptors are present all over the cell surface, requiring a molecule with a “multi-armed” (or multivalent) structure to do the best job of preventing a virus from docking.

“Multivalency allows us to block more than one receptor with each molecule,” says Kane. “This approach has the potential to be very effective – in fact, orders of magnitude more effective than any existing treatment.”

There are multiple benefits to treating HIV by blocking its entrance to human cells. In contrast to the constantly mutating virus cells, the human receptors are stable and do not change over time, making development of resistance to a blocking drug unlikely. In addition, the new entry inhibitors may be extremely effective without any dangerous side-effects. People with a genetic defect (a natural blockage) in this receptor show immunity to HIV infection, but are otherwise normal. The researchers admit that this preliminary research is very exciting; however, further study and testing will be needed to develop a viable treatment.

“We hope the next two years of work will form the basis of a more detailed grant in the future,” says Kane.

About Rensselaer
Rensselaer Polytechnic Institute, founded in 1824, is the nation’s oldest technological university. The school offers degrees in engineering, the sciences, information technology, architecture, management, and the humanities and social sciences. Institute programs serve undergraduates, graduate students, and working professionals around the world. Rensselaer faculty members are known for pre-eminence in research conducted in a wide range of research centers that are characterized by strong industry partnerships. The Institute is especially well known for its success in the transfer of technology from the laboratory to the marketplace so that new discoveries and inventions benefit human life, protect the environment, and strengthen economic development.

Joely Johnson | Rensselaer News
Further information:
http://www.rpi.edu/web/News/press_releases/2003/kane.htm

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Reptile vocalization is surprisingly flexible

30.05.2017 | Life Sciences

EU research project DEMETER strives for innovation in enzyme production technology

30.05.2017 | Power and Electrical Engineering

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>