Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Designer Molecules – Engineering a Better Approach to HIV Treatment

20.05.2003


Ravi Kane Receives Grant From the National Institutes of Health



Ravi Kane, assistant professor of chemical engineering at Rensselaer Polytechnic Institute, is designing brand-new molecules that may one day fend off an HIV infection. Bolstering the body’s molecular defenses is a novel method that may lead to highly effective treatments for HIV, the virus that can lead to AIDS.

Kane has received a two-year, $150,000 grant from the National Institute of Allergy and Infectious Disease (NIAID), a division of the National Institutes of Health, to pursue research into this promising HIV treatment.


The Trouble With Today’s Treatments

Today’s FDA-approved HIV treatments take aim at the virus itself. Drugs used in the standard “cocktail” regimens, including reverse transcriptase and protease inhibitors, are intended to disable HIV at two stages in its replication process. Such treatments are undoubtedly lifesaving for many people; however, they deliver varying success due to the ongoing emergence of resistant HIV strains. These drugs are also expensive and lead to a host of side-effects, including lipodystrophy (abnormal fat accumulation or loss in certain parts of the body) and dangerously high cholesterol and triglyceride levels.

A New Approach: Defensive Maneuvers

Kane’s research team at Rensselaer, and Albany Medical Center collaborators Kathy Stellrecht and Dennis Metzger, are trying a different approach. The Rensselaer team is designing molecules that block the particular receptors (located on human cells) that act as the docking sites where the majority of HIV strains make their first attempt at infiltration. These receptors are present all over the cell surface, requiring a molecule with a “multi-armed” (or multivalent) structure to do the best job of preventing a virus from docking.

“Multivalency allows us to block more than one receptor with each molecule,” says Kane. “This approach has the potential to be very effective – in fact, orders of magnitude more effective than any existing treatment.”

There are multiple benefits to treating HIV by blocking its entrance to human cells. In contrast to the constantly mutating virus cells, the human receptors are stable and do not change over time, making development of resistance to a blocking drug unlikely. In addition, the new entry inhibitors may be extremely effective without any dangerous side-effects. People with a genetic defect (a natural blockage) in this receptor show immunity to HIV infection, but are otherwise normal. The researchers admit that this preliminary research is very exciting; however, further study and testing will be needed to develop a viable treatment.

“We hope the next two years of work will form the basis of a more detailed grant in the future,” says Kane.

About Rensselaer
Rensselaer Polytechnic Institute, founded in 1824, is the nation’s oldest technological university. The school offers degrees in engineering, the sciences, information technology, architecture, management, and the humanities and social sciences. Institute programs serve undergraduates, graduate students, and working professionals around the world. Rensselaer faculty members are known for pre-eminence in research conducted in a wide range of research centers that are characterized by strong industry partnerships. The Institute is especially well known for its success in the transfer of technology from the laboratory to the marketplace so that new discoveries and inventions benefit human life, protect the environment, and strengthen economic development.

Joely Johnson | Rensselaer News
Further information:
http://www.rpi.edu/web/News/press_releases/2003/kane.htm

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>