Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Image Soft Tissues With New X-Ray Technique

20.05.2003


A conventional synchrotron radiograph of a foot (A) and the same foot shown with Diffraction Enhanced Imaging (B). Note the greater variety of soft tissues visible with in the DEI frame.


Provides more information than conventional x-rays or other scanning methods

Scientists at the U.S. Department of Energy’s Brookhaven National Laboratory, in collaboration with researchers at Rush Medical College, have demonstrated the effectiveness of a novel x-ray imaging technology to visualize soft tissues of the human foot that are not visible with conventional x-rays. The technique, called Diffraction Enhanced Imaging (DEI), provides all of the information imparted by conventional x-rays as well as detailed information on soft tissues previously accessible only with additional scanning methods such as ultrasound or magnetic resonance imaging (MRI). This study appears in the May 2003 issue of the Journal of Anatomy.

“We’ve previously shown that this technique can visualize tumors in breast tissue and cartilage in human knee and ankle joints, but this is the first time we have shown it to be effective at visualizing a variety of soft tissues, such as skin, cartilage, ligaments, tendons, adipose pads, and even collagen and large blood vessels,” said physicist Zhong Zhong, who works at the National Synchrotron Light Source (NSLS) at Brookhaven Lab, where the current work was done. “The ability to visualize such a range of soft tissues as well as bone and other hard tissues with just one technique has many potential applications in diagnosis,” Zhong said.



The technique makes use of the intense beams of x-rays available at synchrotron sources such as the NSLS. These beams are thousands of times brighter than those produced by conventional x-ray tubes, and provide enough monochromatic x-ray flux for imaging even after selection of a single wavelength.

In conventional x-ray images, the various shades of gray are produced because different tissues absorb different amounts of x-ray energy. “This works great in imaging bones and other calcified tissues,” said Zhong, “but less satisfactorily in imaging soft-tissues that have similar and low x-ray absorption.” In DEI, the scientists are more interested in the x-rays that pass through the tissue and how they bend and scatter as they do, because these properties vary more subtly between different types of tissue.

To analyze a specimen with DEI, the scientists place a perfect silicon crystal between the sample and the image detector. As x-rays from the synchrotron go through the sample, they bend, or refract, and scatter different amounts depending on the composition and microscopic structure of the tissue in the sample. Then, when the variously bent rays exit the sample and strike the silicon crystal, they are diffracted by different amounts according to their angular spread. So the silicon crystal helps convert the subtle differences in scattering angles produced by the different tissues into intensity differences, which can then be readily detected by a conventional x-ray detector. This results in extremely detailed images that are sensitive to soft tissue types.

For example, in the current study, a conventional radiograph of a human toe shows bones and a calcified blood vessel; except for the faint “shadow” of the surrounding soft tissues and calcification within a tendon, no other structures are visible. The DEI scan of the same specimen in the same position clearly shows skin, the fat pads beneath the bones, the blood vessel, the nail plate, and some tendons, which are clearly distinguishable from the surrounding connective tissue. Within one of the fat pads, even the organizational architecture of the collagen framework is visible. Moreover, the bones take on a three dimensional appearance because of the detail available in the scans.

In the current study, the DEI images were produced with a lower x-ray dose than that used for diagnostic x-rays and no contrast agent was needed, making the technique viable as a potential screening tool, said Zhong.

The scientists are still working on how to scale down the DEI design so that it can be used in a clinical setting. But they say this should be feasible and that the technique may eventually greatly enhance mammography and become increasingly important in the detection of other soft tissue pathologies such as osteoarthritis, breast cancer, and lung cancer.

Collaborators at Rush Medical College include Carol Muehleman, Jun Li, and Klaus Kuettner. This research was funded by the National Institutes of Health, GlaxoSmithKline, Inc., and the U.S. Department of Energy, which supports basic research in a variety of scientific fields.

Karen McNulty Walsh, | Brookhaven National Laboratory
Further information:
http://www.bnl.gov/bnlweb/pubaf/pr/2003/bnlpr051303.htm
http://www.rushu.rush.edu/medcol/

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>