Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mutated protein combination tied to excessive sugar production

19.05.2003


Study identifies potential target for diabetes drugs



Researchers at Dana-Farber Cancer Institute have traced runaway sugar production in the liver – an important feature of diabetes – to flaws in a two-protein combination at the heart of a molecular switch that responds to insulin.

The findings, to be posted by the journal Nature on its Web site on May 18, suggest that drugs designed to block the interaction of the two switch proteins might be effective in treating diabetes, and with few side effects.


Building on their discovery of this master switch in fall 2001, scientists led by Dana-Farber’s Bruce Spiegelman, PhD, found that two previously known proteins in mice must “dock,” one on top of the other, to enable the switch to turn on genes that initiate the liver’s sugar-making process. Furthermore, when mutations cause a flaw in one of the proteins, the switch no longer can respond to insulin, the hormone that normally regulates sugar manufacture in the liver.

“The actual molecular connections between the proteins are potential targets for diabetic therapy,” says Spiegelman, the paper’s senior author. It may be possible to design an oral drug that could block the joining of the two proteins – PGC-1alpha and FOXO1 – when the switch is stuck in the “on” position.

The liver’s manufacture of sugar from raw materials, a process called gluconeogenesis, is designed to provide the body (especially the brain) with necessary glucose when the person has been fasting and isn’t obtaining the sugar from food. Glucagon and glucocorticoid hormones initiate the process on by sending signals to liver cells, triggering activity (DNA transcription) in genes that set gluconeogenesis in motion.

Insulin, produced in the pancreas, has the opposite effect, turning off gluconeogenesis when normal feeding resumes. Insulin activates the insulin receptors on liver cells’ surfaces, which send signals into the cells’ nuclei where they are received by the switch made up of the PGC-1alpha and FOXO1 proteins.

FOXO1 protein, known as a transcription factor, binds directly to the DNA molecules of the gluconeogenesis genes, causing them to copy their genetic blueprints into RNA. PGC-1alpha does not directly bind to the DNA, but instead docks onto the FOXO1 protein. Together, “they area a powerful, insulin-sensitive switch” for gluconeogenesis, says Spiegelman. “PGC-1 provides the horsepower, and FOXO1 is the insulin-sensitive receiver” of signals.

In a series of experiments with transgenic mice, Spiegelman and his colleagues showed that if a mutation occurs in the gene producing FOXO1, it results in an abnormal FOXO1 protein that no longer is sensitive to insulin. Consequently, the switch fails and the liver overproduces glucose, which spills into the blood and can damage vital organs and nerves.

In his previous Nature paper [Sept. 13, 2001] Spiegelman demonstrated that the PGC-1alpha protein was the long-sought switch for gluconeogenesis, but how that protein worked with FOXO1 wasn’t clear. At the time, Spiegelman suggested that blocking PGC-1alpha might be a new therapeutic strategy. He now says that targeting just the combination of PGC-1alpha and FOXO1 would be a more finely pointed tool with fewer unwanted effects.

“What’s exciting about this paper is that is unifies two fields,” commented Spiegelman, who is also a professor of cell biology at Harvard Medical School. “One was the discovery of the signaling pathway from the insulin receptor to the FOXO1 protein – and this was found in worms. The other was the work that led to the identification of PGC-1alpha as the switch for gluconeogenesis. Now we know that it is the complex of PGC-1alpha and FOXO1 that is important.”



The research was funded in part by the National Institutes of Health.

Dana-Farber Cancer Institute is a principal teaching affiliate of the Harvard Medical School and is among the leading cancer research and care centers in the United States. It is a founding member of the Dana-Farber/Harvard Cancer Center (DF/HCC), designated a comprehensive cancer center by the National Cancer Institute.

Bill Schaller | EurekAlert!
Further information:
http://www.dfci.harvard.edu/

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>