Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mutated protein combination tied to excessive sugar production

19.05.2003


Study identifies potential target for diabetes drugs



Researchers at Dana-Farber Cancer Institute have traced runaway sugar production in the liver – an important feature of diabetes – to flaws in a two-protein combination at the heart of a molecular switch that responds to insulin.

The findings, to be posted by the journal Nature on its Web site on May 18, suggest that drugs designed to block the interaction of the two switch proteins might be effective in treating diabetes, and with few side effects.


Building on their discovery of this master switch in fall 2001, scientists led by Dana-Farber’s Bruce Spiegelman, PhD, found that two previously known proteins in mice must “dock,” one on top of the other, to enable the switch to turn on genes that initiate the liver’s sugar-making process. Furthermore, when mutations cause a flaw in one of the proteins, the switch no longer can respond to insulin, the hormone that normally regulates sugar manufacture in the liver.

“The actual molecular connections between the proteins are potential targets for diabetic therapy,” says Spiegelman, the paper’s senior author. It may be possible to design an oral drug that could block the joining of the two proteins – PGC-1alpha and FOXO1 – when the switch is stuck in the “on” position.

The liver’s manufacture of sugar from raw materials, a process called gluconeogenesis, is designed to provide the body (especially the brain) with necessary glucose when the person has been fasting and isn’t obtaining the sugar from food. Glucagon and glucocorticoid hormones initiate the process on by sending signals to liver cells, triggering activity (DNA transcription) in genes that set gluconeogenesis in motion.

Insulin, produced in the pancreas, has the opposite effect, turning off gluconeogenesis when normal feeding resumes. Insulin activates the insulin receptors on liver cells’ surfaces, which send signals into the cells’ nuclei where they are received by the switch made up of the PGC-1alpha and FOXO1 proteins.

FOXO1 protein, known as a transcription factor, binds directly to the DNA molecules of the gluconeogenesis genes, causing them to copy their genetic blueprints into RNA. PGC-1alpha does not directly bind to the DNA, but instead docks onto the FOXO1 protein. Together, “they area a powerful, insulin-sensitive switch” for gluconeogenesis, says Spiegelman. “PGC-1 provides the horsepower, and FOXO1 is the insulin-sensitive receiver” of signals.

In a series of experiments with transgenic mice, Spiegelman and his colleagues showed that if a mutation occurs in the gene producing FOXO1, it results in an abnormal FOXO1 protein that no longer is sensitive to insulin. Consequently, the switch fails and the liver overproduces glucose, which spills into the blood and can damage vital organs and nerves.

In his previous Nature paper [Sept. 13, 2001] Spiegelman demonstrated that the PGC-1alpha protein was the long-sought switch for gluconeogenesis, but how that protein worked with FOXO1 wasn’t clear. At the time, Spiegelman suggested that blocking PGC-1alpha might be a new therapeutic strategy. He now says that targeting just the combination of PGC-1alpha and FOXO1 would be a more finely pointed tool with fewer unwanted effects.

“What’s exciting about this paper is that is unifies two fields,” commented Spiegelman, who is also a professor of cell biology at Harvard Medical School. “One was the discovery of the signaling pathway from the insulin receptor to the FOXO1 protein – and this was found in worms. The other was the work that led to the identification of PGC-1alpha as the switch for gluconeogenesis. Now we know that it is the complex of PGC-1alpha and FOXO1 that is important.”



The research was funded in part by the National Institutes of Health.

Dana-Farber Cancer Institute is a principal teaching affiliate of the Harvard Medical School and is among the leading cancer research and care centers in the United States. It is a founding member of the Dana-Farber/Harvard Cancer Center (DF/HCC), designated a comprehensive cancer center by the National Cancer Institute.

Bill Schaller | EurekAlert!
Further information:
http://www.dfci.harvard.edu/

More articles from Health and Medicine:

nachricht Cystic fibrosis alters the structure of mucus in airways
29.06.2017 | University of Iowa Health Care

nachricht Mice provide insight into genetics of autism spectrum disorders
28.06.2017 | University of California - Davis

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Nanostructures taste the rainbow

29.06.2017 | Physics and Astronomy

New technique unveils 'matrix' inside tissues and tumors

29.06.2017 | Life Sciences

Cystic fibrosis alters the structure of mucus in airways

29.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>