Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover common cause for aging and age-related disease

16.05.2003


Why do serious diseases such as cancer, Alzheimer’s and Huntington’s mainly hit us in middle age or later? The links between aging and age-related diseases have proved elusive.



In studies of the powerfully informative roundworm, C. elegans, UCSF scientists have discovered that a class of molecules found in the worms and in people can both prolong life in the worm and prevent the harmful accumulation of abnormal proteins that cause a debilitating Huntington’s-like disease. The finding appears to be the first evidence in an animal of a link between aging and age-related disease.

The molecules, called "small heat-shock proteins," are known to assemble into complexes that bind to damaged or unfolded cellular proteins and prevent them from forming into harmful aggregations.


"We think we’ve found an important physiological explanation for both aging and age-related disease," said Cynthia Kenyon, PhD, the Herbert Boyer Professor of Biochemistry and Biophysics at UCSF and senior author on a paper describing the work in the May 16 issue of SCIENCE. "The question of why older people are more susceptible to so many diseases has been a fundamental, unsolved problem in biology. Our findings suggest a beautiful molecular explanation, at least for this protein-aggregation disease.

"By preventing damaged and unfolded proteins from aggregating, this one set of proteins may be able to stave off both aging and age-related disease. The small heat-shock proteins are the molecular link between the two."

The growing roster of diseases thought to be caused by protein clumping or aggregation -- Alzheimer’s, Huntington’s, Parkinson’s, prion diseases -- suggests that the small heat shock proteins may influence the onset of many age-related ailments, the researchers say. The pharmaceutical industry is already exploring ways to increase the activity of heat-shock proteins. The research by Kenyon’s laboratory indicates that if these drugs work, they may not only protect protein function, but also extend life.

Kenyon made international news 10 years ago when her laboratory showed that modifying a single gene in C. elegans doubled the worm’s healthy life-span. The gene, known as daf-2, encodes a receptor for insulin as well as for a hormone called insulin-like growth factor. The same or related pathways have since been shown to affect longevity in fruit flies and mice and are likely to control life-span in humans as well.

In neurodegenerative Huntington’s disease, brain cells produce proteins with an abnormally high number of repeating subunits called glutamine. The proteins aggregate, disrupting their function. Ultimately, people with Huntington’s disease lose control of their movements. Recently, researchers traced a similar morbid course in C. elegans, using fluorescent tags to follow the debilitating accumulation of the damaged protein. They found that in worms, as in humans, the proteins formed aggregates, but only as the animals aged.

Other researchers have shown that Kenyon’s long-lived daf-2 mutant worms accumulate the disabling proteins later in life than normal worms, so the worms have both increased life-span and delayed onset of age-related disease -- the best of both worlds.

In the new research, Kenyon’s team used DNA microarrays to find that the expression of genes for four small heat-shock proteins "sharply increased" in the long-lived daf-2 mutants.

They also found that the boost in this gene expression required two key proteins in the daf-2-insulin/IGF-1 receptor pathway -- the proteins DAF-16 and HSF-1, both "transcription factors" that direct gene activity. The involvement of HSF-1 in the daf-2 pathway had not been known.

To determine if the small heat-shock proteins influenced life-span, the scientists used a fairly new technique called RNA interference, or RNAi, to partially disable the small heat-shock protein genes. They showed that the heat-shock proteins account for a substantial part of the worms’ increased life-span.

(In a related study, researchers at the Buck Institute for Aging led by Gordon Lithgow have recently shown that raising the levels of small heat-shock proteins can extend the lifespan of C. elegans.)

Small heat-shock proteins are known to inhibit protein aggregation, so Kenyon and her colleagues used the powerful RNAi technique to show that decreased heat-shock protein gene expression accelerated the onset of Huntington’s-like "polyglutamine" protein aggregation -- strong evidence that small heat shock proteins normally delay the harmful protein aggregation.

Small heat-shock proteins, they conclude, may influence the rates of aging and of polyglutatmine aggregation "coordinately." Mutations in the DAF-2 pathway, they write, may delay both aging and susceptibility to this age-related disease, at least in part by increasing small heat-shock protein gene expression.

"The small heat-shock proteins appear to be the link between aging and at least this age-related disease," Kenyon stresses. "And by regulating the small heat-shock proteins, the insulin/IGF-1 pathway can influence both aging and age-related disease coordinately."

Kenyon, who was elected this month to the National Academy of Sciences, directs UCSF’s Hillblom Center for the Biology of Aging at the University’s new Mission Bay campus.


Lead author on the SCIENCE paper is Ao-Lin Hsu, PhD; co-author is Coleen T. Murphy. Both are post-doctoral scientists in Kenyon’s lab.

The research was funded by the Ellison Foundation and the National Institute of Aging.

Wallace Ravven | EurekAlert!
Further information:
http://www.ucsf.edu/

More articles from Health and Medicine:

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>