Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover common cause for aging and age-related disease

16.05.2003


Why do serious diseases such as cancer, Alzheimer’s and Huntington’s mainly hit us in middle age or later? The links between aging and age-related diseases have proved elusive.



In studies of the powerfully informative roundworm, C. elegans, UCSF scientists have discovered that a class of molecules found in the worms and in people can both prolong life in the worm and prevent the harmful accumulation of abnormal proteins that cause a debilitating Huntington’s-like disease. The finding appears to be the first evidence in an animal of a link between aging and age-related disease.

The molecules, called "small heat-shock proteins," are known to assemble into complexes that bind to damaged or unfolded cellular proteins and prevent them from forming into harmful aggregations.


"We think we’ve found an important physiological explanation for both aging and age-related disease," said Cynthia Kenyon, PhD, the Herbert Boyer Professor of Biochemistry and Biophysics at UCSF and senior author on a paper describing the work in the May 16 issue of SCIENCE. "The question of why older people are more susceptible to so many diseases has been a fundamental, unsolved problem in biology. Our findings suggest a beautiful molecular explanation, at least for this protein-aggregation disease.

"By preventing damaged and unfolded proteins from aggregating, this one set of proteins may be able to stave off both aging and age-related disease. The small heat-shock proteins are the molecular link between the two."

The growing roster of diseases thought to be caused by protein clumping or aggregation -- Alzheimer’s, Huntington’s, Parkinson’s, prion diseases -- suggests that the small heat shock proteins may influence the onset of many age-related ailments, the researchers say. The pharmaceutical industry is already exploring ways to increase the activity of heat-shock proteins. The research by Kenyon’s laboratory indicates that if these drugs work, they may not only protect protein function, but also extend life.

Kenyon made international news 10 years ago when her laboratory showed that modifying a single gene in C. elegans doubled the worm’s healthy life-span. The gene, known as daf-2, encodes a receptor for insulin as well as for a hormone called insulin-like growth factor. The same or related pathways have since been shown to affect longevity in fruit flies and mice and are likely to control life-span in humans as well.

In neurodegenerative Huntington’s disease, brain cells produce proteins with an abnormally high number of repeating subunits called glutamine. The proteins aggregate, disrupting their function. Ultimately, people with Huntington’s disease lose control of their movements. Recently, researchers traced a similar morbid course in C. elegans, using fluorescent tags to follow the debilitating accumulation of the damaged protein. They found that in worms, as in humans, the proteins formed aggregates, but only as the animals aged.

Other researchers have shown that Kenyon’s long-lived daf-2 mutant worms accumulate the disabling proteins later in life than normal worms, so the worms have both increased life-span and delayed onset of age-related disease -- the best of both worlds.

In the new research, Kenyon’s team used DNA microarrays to find that the expression of genes for four small heat-shock proteins "sharply increased" in the long-lived daf-2 mutants.

They also found that the boost in this gene expression required two key proteins in the daf-2-insulin/IGF-1 receptor pathway -- the proteins DAF-16 and HSF-1, both "transcription factors" that direct gene activity. The involvement of HSF-1 in the daf-2 pathway had not been known.

To determine if the small heat-shock proteins influenced life-span, the scientists used a fairly new technique called RNA interference, or RNAi, to partially disable the small heat-shock protein genes. They showed that the heat-shock proteins account for a substantial part of the worms’ increased life-span.

(In a related study, researchers at the Buck Institute for Aging led by Gordon Lithgow have recently shown that raising the levels of small heat-shock proteins can extend the lifespan of C. elegans.)

Small heat-shock proteins are known to inhibit protein aggregation, so Kenyon and her colleagues used the powerful RNAi technique to show that decreased heat-shock protein gene expression accelerated the onset of Huntington’s-like "polyglutamine" protein aggregation -- strong evidence that small heat shock proteins normally delay the harmful protein aggregation.

Small heat-shock proteins, they conclude, may influence the rates of aging and of polyglutatmine aggregation "coordinately." Mutations in the DAF-2 pathway, they write, may delay both aging and susceptibility to this age-related disease, at least in part by increasing small heat-shock protein gene expression.

"The small heat-shock proteins appear to be the link between aging and at least this age-related disease," Kenyon stresses. "And by regulating the small heat-shock proteins, the insulin/IGF-1 pathway can influence both aging and age-related disease coordinately."

Kenyon, who was elected this month to the National Academy of Sciences, directs UCSF’s Hillblom Center for the Biology of Aging at the University’s new Mission Bay campus.


Lead author on the SCIENCE paper is Ao-Lin Hsu, PhD; co-author is Coleen T. Murphy. Both are post-doctoral scientists in Kenyon’s lab.

The research was funded by the Ellison Foundation and the National Institute of Aging.

Wallace Ravven | EurekAlert!
Further information:
http://www.ucsf.edu/

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>