Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover common cause for aging and age-related disease

16.05.2003


Why do serious diseases such as cancer, Alzheimer’s and Huntington’s mainly hit us in middle age or later? The links between aging and age-related diseases have proved elusive.



In studies of the powerfully informative roundworm, C. elegans, UCSF scientists have discovered that a class of molecules found in the worms and in people can both prolong life in the worm and prevent the harmful accumulation of abnormal proteins that cause a debilitating Huntington’s-like disease. The finding appears to be the first evidence in an animal of a link between aging and age-related disease.

The molecules, called "small heat-shock proteins," are known to assemble into complexes that bind to damaged or unfolded cellular proteins and prevent them from forming into harmful aggregations.


"We think we’ve found an important physiological explanation for both aging and age-related disease," said Cynthia Kenyon, PhD, the Herbert Boyer Professor of Biochemistry and Biophysics at UCSF and senior author on a paper describing the work in the May 16 issue of SCIENCE. "The question of why older people are more susceptible to so many diseases has been a fundamental, unsolved problem in biology. Our findings suggest a beautiful molecular explanation, at least for this protein-aggregation disease.

"By preventing damaged and unfolded proteins from aggregating, this one set of proteins may be able to stave off both aging and age-related disease. The small heat-shock proteins are the molecular link between the two."

The growing roster of diseases thought to be caused by protein clumping or aggregation -- Alzheimer’s, Huntington’s, Parkinson’s, prion diseases -- suggests that the small heat shock proteins may influence the onset of many age-related ailments, the researchers say. The pharmaceutical industry is already exploring ways to increase the activity of heat-shock proteins. The research by Kenyon’s laboratory indicates that if these drugs work, they may not only protect protein function, but also extend life.

Kenyon made international news 10 years ago when her laboratory showed that modifying a single gene in C. elegans doubled the worm’s healthy life-span. The gene, known as daf-2, encodes a receptor for insulin as well as for a hormone called insulin-like growth factor. The same or related pathways have since been shown to affect longevity in fruit flies and mice and are likely to control life-span in humans as well.

In neurodegenerative Huntington’s disease, brain cells produce proteins with an abnormally high number of repeating subunits called glutamine. The proteins aggregate, disrupting their function. Ultimately, people with Huntington’s disease lose control of their movements. Recently, researchers traced a similar morbid course in C. elegans, using fluorescent tags to follow the debilitating accumulation of the damaged protein. They found that in worms, as in humans, the proteins formed aggregates, but only as the animals aged.

Other researchers have shown that Kenyon’s long-lived daf-2 mutant worms accumulate the disabling proteins later in life than normal worms, so the worms have both increased life-span and delayed onset of age-related disease -- the best of both worlds.

In the new research, Kenyon’s team used DNA microarrays to find that the expression of genes for four small heat-shock proteins "sharply increased" in the long-lived daf-2 mutants.

They also found that the boost in this gene expression required two key proteins in the daf-2-insulin/IGF-1 receptor pathway -- the proteins DAF-16 and HSF-1, both "transcription factors" that direct gene activity. The involvement of HSF-1 in the daf-2 pathway had not been known.

To determine if the small heat-shock proteins influenced life-span, the scientists used a fairly new technique called RNA interference, or RNAi, to partially disable the small heat-shock protein genes. They showed that the heat-shock proteins account for a substantial part of the worms’ increased life-span.

(In a related study, researchers at the Buck Institute for Aging led by Gordon Lithgow have recently shown that raising the levels of small heat-shock proteins can extend the lifespan of C. elegans.)

Small heat-shock proteins are known to inhibit protein aggregation, so Kenyon and her colleagues used the powerful RNAi technique to show that decreased heat-shock protein gene expression accelerated the onset of Huntington’s-like "polyglutamine" protein aggregation -- strong evidence that small heat shock proteins normally delay the harmful protein aggregation.

Small heat-shock proteins, they conclude, may influence the rates of aging and of polyglutatmine aggregation "coordinately." Mutations in the DAF-2 pathway, they write, may delay both aging and susceptibility to this age-related disease, at least in part by increasing small heat-shock protein gene expression.

"The small heat-shock proteins appear to be the link between aging and at least this age-related disease," Kenyon stresses. "And by regulating the small heat-shock proteins, the insulin/IGF-1 pathway can influence both aging and age-related disease coordinately."

Kenyon, who was elected this month to the National Academy of Sciences, directs UCSF’s Hillblom Center for the Biology of Aging at the University’s new Mission Bay campus.


Lead author on the SCIENCE paper is Ao-Lin Hsu, PhD; co-author is Coleen T. Murphy. Both are post-doctoral scientists in Kenyon’s lab.

The research was funded by the Ellison Foundation and the National Institute of Aging.

Wallace Ravven | EurekAlert!
Further information:
http://www.ucsf.edu/

More articles from Health and Medicine:

nachricht NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures
17.11.2017 | National Institute of Standards and Technology (NIST)

nachricht High speed video recording precisely measures blood cell velocity
15.11.2017 | ITMO University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>