Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover common cause for aging and age-related disease

16.05.2003


Why do serious diseases such as cancer, Alzheimer’s and Huntington’s mainly hit us in middle age or later? The links between aging and age-related diseases have proved elusive.



In studies of the powerfully informative roundworm, C. elegans, UCSF scientists have discovered that a class of molecules found in the worms and in people can both prolong life in the worm and prevent the harmful accumulation of abnormal proteins that cause a debilitating Huntington’s-like disease. The finding appears to be the first evidence in an animal of a link between aging and age-related disease.

The molecules, called "small heat-shock proteins," are known to assemble into complexes that bind to damaged or unfolded cellular proteins and prevent them from forming into harmful aggregations.


"We think we’ve found an important physiological explanation for both aging and age-related disease," said Cynthia Kenyon, PhD, the Herbert Boyer Professor of Biochemistry and Biophysics at UCSF and senior author on a paper describing the work in the May 16 issue of SCIENCE. "The question of why older people are more susceptible to so many diseases has been a fundamental, unsolved problem in biology. Our findings suggest a beautiful molecular explanation, at least for this protein-aggregation disease.

"By preventing damaged and unfolded proteins from aggregating, this one set of proteins may be able to stave off both aging and age-related disease. The small heat-shock proteins are the molecular link between the two."

The growing roster of diseases thought to be caused by protein clumping or aggregation -- Alzheimer’s, Huntington’s, Parkinson’s, prion diseases -- suggests that the small heat shock proteins may influence the onset of many age-related ailments, the researchers say. The pharmaceutical industry is already exploring ways to increase the activity of heat-shock proteins. The research by Kenyon’s laboratory indicates that if these drugs work, they may not only protect protein function, but also extend life.

Kenyon made international news 10 years ago when her laboratory showed that modifying a single gene in C. elegans doubled the worm’s healthy life-span. The gene, known as daf-2, encodes a receptor for insulin as well as for a hormone called insulin-like growth factor. The same or related pathways have since been shown to affect longevity in fruit flies and mice and are likely to control life-span in humans as well.

In neurodegenerative Huntington’s disease, brain cells produce proteins with an abnormally high number of repeating subunits called glutamine. The proteins aggregate, disrupting their function. Ultimately, people with Huntington’s disease lose control of their movements. Recently, researchers traced a similar morbid course in C. elegans, using fluorescent tags to follow the debilitating accumulation of the damaged protein. They found that in worms, as in humans, the proteins formed aggregates, but only as the animals aged.

Other researchers have shown that Kenyon’s long-lived daf-2 mutant worms accumulate the disabling proteins later in life than normal worms, so the worms have both increased life-span and delayed onset of age-related disease -- the best of both worlds.

In the new research, Kenyon’s team used DNA microarrays to find that the expression of genes for four small heat-shock proteins "sharply increased" in the long-lived daf-2 mutants.

They also found that the boost in this gene expression required two key proteins in the daf-2-insulin/IGF-1 receptor pathway -- the proteins DAF-16 and HSF-1, both "transcription factors" that direct gene activity. The involvement of HSF-1 in the daf-2 pathway had not been known.

To determine if the small heat-shock proteins influenced life-span, the scientists used a fairly new technique called RNA interference, or RNAi, to partially disable the small heat-shock protein genes. They showed that the heat-shock proteins account for a substantial part of the worms’ increased life-span.

(In a related study, researchers at the Buck Institute for Aging led by Gordon Lithgow have recently shown that raising the levels of small heat-shock proteins can extend the lifespan of C. elegans.)

Small heat-shock proteins are known to inhibit protein aggregation, so Kenyon and her colleagues used the powerful RNAi technique to show that decreased heat-shock protein gene expression accelerated the onset of Huntington’s-like "polyglutamine" protein aggregation -- strong evidence that small heat shock proteins normally delay the harmful protein aggregation.

Small heat-shock proteins, they conclude, may influence the rates of aging and of polyglutatmine aggregation "coordinately." Mutations in the DAF-2 pathway, they write, may delay both aging and susceptibility to this age-related disease, at least in part by increasing small heat-shock protein gene expression.

"The small heat-shock proteins appear to be the link between aging and at least this age-related disease," Kenyon stresses. "And by regulating the small heat-shock proteins, the insulin/IGF-1 pathway can influence both aging and age-related disease coordinately."

Kenyon, who was elected this month to the National Academy of Sciences, directs UCSF’s Hillblom Center for the Biology of Aging at the University’s new Mission Bay campus.


Lead author on the SCIENCE paper is Ao-Lin Hsu, PhD; co-author is Coleen T. Murphy. Both are post-doctoral scientists in Kenyon’s lab.

The research was funded by the Ellison Foundation and the National Institute of Aging.

Wallace Ravven | EurekAlert!
Further information:
http://www.ucsf.edu/

More articles from Health and Medicine:

nachricht Periodic ventilation keeps more pollen out than tilted-open windows
29.03.2017 | Technische Universität München

nachricht Improving memory with magnets
28.03.2017 | McGill University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Periodic ventilation keeps more pollen out than tilted-open windows

29.03.2017 | Health and Medicine

Researchers discover dust plays prominent role in nutrients of mountain forest ecoystems

29.03.2017 | Earth Sciences

OLED production facility from a single source

29.03.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>