Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sandia microscaffolding fits perfectly in patient’s jaw

16.05.2003


Painless bone substitute could offer new era for surgeons



In an operating room in Carle Hospital in Urbana, Ill., on May 7, as scientists from the University of Illinois (UI) and Sandia National Laboratories watched, surgeon Michael Goldwasser fitted a highly unusual ceramic prosthetic device into the mouth of an elderly woman who had lost most of her teeth and along with it, much of the bone of her lower jaw.

The fitting operation was to determine whether the implant - created a thousand miles away at Sandia in Albuquerque - had been accurately designed, from its overall shape down to inclusion of a nerve groove.


"If it fit like a sock on a rooster, our method wouldn’t have worked," Goldwasser said.

Observers said it fit like a glove.

If approved by the Food and Drug Administration for in vivo testing, the scaffoldlike structure - a layered mesh stronger than bone, yet porous - would substitute for a portion of the mandible, or lower jaw, until healthy, newly grown bone and blood vessels could weave their way through it like vines through a garden lattice. A patent for the implant is pending.

The ceramic scaffolding would reduce the pain, recovery time, and chances of infection of those needing bone replacements in the jaw, as well as skull, spine, or other bony areas. Other benefits include avoidance of longer surgeries, more predictability of outcome, and lower health care costs.

The device is built mainly of hydroxyapatite, a material already approved by FDA for bodily implants, so approval of the new device could be swift.

The woman was reportedly pleased to be part of an experiment that might benefit humanity, because the quality of fit would determine whether scientists and doctors using computer programs, modern communications, and machines a thousands miles from each other could produce a prosthetic device that would fit seamlessly in a patient’s sensitive mouth - or, for that matter, skull or spinal vertebrae - without the manufacturers ever seeing the patient.

But because scientists have studied the device’s strength and permeability only in vitro (in the lab), the woman then had to endure the standard method of bone replacement, which by comparison seems almost medieval. This involves cutting a several-square-inch piece of bone from her pelvis, which is then power-sawn and drilled into the correct shape in the operating room, a process that takes about an hour and leaves the patient to endure a healing pelvis as well as a healing mouth.

"Surgeons and patients would love to eliminate both the bone retrieval and implant preparation processes," says Sandia scientist Joe Cesarano, whose team fashioned the new implant. "This test showed we can make artificial porous implants prior to surgery that will fit perfectly into the damaged region. The reconstructive procedure would then only require attaching the implant and closing the wound."

A short course on bone implants

A surgeon uses the patient’s own bone to minimize rejection by the body. Harvesting bone, however, creates new problems, says Goldwasser. Not only is a new area of patient discomfort created but the operation requires more time and anesthetics. These raise the risks of complications in the operation and in healing. "We could use cadaver bones," he says, "but then we face risks of rejection by the host and of possible transfer of disease."

The body may also dispose of the foreign bone prematurely by absorbing it.

"What we want," Goldwasser says, "is a method by which I can see a patient in Illinois, transmit X-ray information to someone who can make a substitute part that would have the porous properties that would allow bone to grow into it, yet be strong enough for normal function. Here, this would mean mastication and appearance."

With the aid of UI bioengineering professor Russ Jamison and graduate and Sandia summer student Jennifer Dellinger, who were experimenting with the growth of bone across porous surfaces and needed a more regularly porous substrate than those found in nature, he learned of a device at Sandia that could do the job.

The Sandia device

The Sandia patented process called Robocasting, led by Cesarano, was conceived and built to fashion defense components out of ceramics in a process that permitted manufacture of specialty parts in a way no ordinary mold or machining procedure could achieve. Situated on a truck, it could make replacement parts on a battlefield, instead of carrying millions of parts onto a site. It is also being developed to form advanced catalyst supports that operate like a maze (rather than straight channels) to increase chemical reactivity.

Controlled by a computer program, the machine dispenses liquefied ceramic pastes, like toothpaste squeezed from a tube, to form shapes of varying complexity along a prearranged path.

To create the simulated bone scaffolding, the machine dispensed a hydroxyapatite mixture in a child’s Lincoln Log-like arrangement, in cross-laid slivers each about as thick and as far apart as the diameters of ten human hairs.

"Bone, blood vessels, and collagen love to grow into a structure with pores of that size [500 microns]," says Cesarano. "The material becomes a hard-tissue scaffold for promoting new bone growth."

The trick in building it, he says, is that "the paste has to be strong enough as it’s being laid to set in place without under support."

Sandian John Stuecker made the paste thicker than normal by increasing the interparticle attractive forces. The changed procedure took about six months to master.

Finally, the scaffolds are embedded in wax and machined to exactly the right shape without splintering the hydroxyapatite. The wax is subsequently removed.

But what was that shape, and how was it to be determined?

The UIUC connection

In part, by the spark of an idea from Goldwasser and the diverse expertise linked together by Jamison.

"One by one, we linked together - even if only electronically at first - the people whom I knew who could bring talent, skill, and passion to the project. None of us working independently could have accomplished the results we have," he says.

Jamison involved computer technologists and designers Ben Grosser and Janet Sinn-Hanlon at UI’s Beckman Institute to encode CAT scan results into a computer program that could be shipped electronically to Sandia, where Michael Saavedra and David Gill created an interface to machine the final shape.

Complicating the process was that while a CAT scan could accurately delineate the diseased shape of an existing bone, it could not show what wasn’t there: the exact dimensions of what the bone would have looked like, were it healthy. This required the potentially expensive presence of the surgeon Goldwasser working with the computer programmers to create the dimensions of what should be there but wasn’t.

"Eventually, if it could be done electronically, it may be a very simple thing and cost-effective," he said.

"There is nothing inherently expensive about either the materials or the process," said Cesarano.

Using a CAD/CAM method where a surgeon need only sketch the shape needed, a piece might quickly and inexpensively take shape at a remote site.

"We’ll see if the clinician, the bioresearcher, and the engineer can come up with a method to implement it," Goldwasser said.


Sandia National Laboratories
A Department of Energy National Laboratory
Managed and Operated by Sandia Corporation
ALBUQUERQUE, NM
LIVERMORE, CA
MEDIA RELATIONS DEPARTMENT MS 0167
ALBUQUERQUE, NM 87185-0167
PHONE: (505) 844-8066 FAX: (505) 844-6367


Neal Singer | EurekAlert!
Further information:
http://www.sandia.gov/
http://www.sandia.gov/news-center/news-releases/2003/other/bone.html

More articles from Health and Medicine:

nachricht New leukemia treatment offers hope
23.09.2016 | King Abdullah University of Science and Technology

nachricht Alzheimer’s: Cellular Mechanism Provides Explanation Model for Declining Memory Performance
21.09.2016 | Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Chains of nanogold – forged with atomic precision

23.09.2016 | Life Sciences

New leukemia treatment offers hope

23.09.2016 | Health and Medicine

Self-assembled nanostructures hit their target

23.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>