Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hopkins scientists uncover role of Fanconi’s Anemia genes in pancreatic cancer

15.05.2003


Scientists at the Johns Hopkins Kimmel Cancer Center have identified three genes, long linked to a rare inherited disease known as Fanconi’s Anemia (FA), that now appear to play a role in many cases of pancreatic cancer.



All of the genes identified, when functioning normally, are part of the DNA repair process. The work is reported in the May 15, 2003 issue of Cancer Research.

"What we think we have is a new genetic cause of some cases, approximately 10 percent or more, of pancreatic cancers, one of the most lethal forms of cancer," according to Scott Kern, M.D., professor of oncology and pathology at the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins and director of the study. The good news is that these genes offer new targets for improved treatment, he says.


The genes have all been associated with Fanconi’s Anemia. Those affected are born with only a single normal copy of one or more of the genes. Though they do not develop FA, these people often develop pancreatic cancer, usually in their 40s and 50s, about a decade earlier than average age of onset, according to Kern.

"The up side is that while these gene mutations cause a horrific disease, they may actually be the Achilles heel of the tumor and make these particular cancers more responsive to treatment," says Kern.

The culprit genes, including BRCA2, linked by other earlier studies to breast cancer, as well as two other genes FANCC and FANCG, appear to make pancreatic cancer cells highly susceptible to treatment with two FDA-approved cancer drugs mitomycin C and cisplatin. Human clinical trials are now being planned.

Normally, the genes are responsible for keeping DNA in good repair. As DNA is copied for cell replication, these genes compare the copies of DNA and fix any breaks. Mitomycin C and cisplatin work by causing the exact breaks these genes are supposed to repair. In the subset of patients whose pancreatic cancer is caused by mutations of these repair genes, the cancer cells are missing this repair mechanism making them unable to fix the breaks caused by the drugs, so the cancer cells should die, Kern says.

Both drugs are currently used in pancreatic cancer therapy, and though some remissions have been reported, the drugs have been largely ineffective. Kern suspects it’s a matter of a patient selection and dose.

Kern says preliminary laboratory and animal studies suggest low doses over a prolonged period of time may have the most benefit, and probably only in patients with FA gene mutations. He is now working with other investigators to develop clinical trials to study the drugs in patients with early onset disease, which may be caused by FA gene mutants.

In the study, the scientists examined a panel of human pancreatic cancers. They found mutations of FA-related genes in three of nine of tumor samples from patients aged 50 or younger. The researchers believe these mutations are common among the general population, estimating that about 1 in every 300 people have inherited a mutated copy of at least one FA gene.

"Our findings also tell us that cancers that appear to occur randomly in the population may not always really be so random," Kern says. "It is likely that the origin of many cancers could be traced back to similar inherited genetic mutations," says Kern.

People born with just one normal copy of the FA genes have an unfortunate head start on the cancer process, Kern says. If that one good copy is lost from dietary and/or environmental exposures, the cellular mistakes go unchecked, accelerating the initiation of cancer. He suspects these mutations could be responsible for a subset of other cancers as well, including certain breast, ovarian, and prostate cancers.

Fanconi’s Anemia occurs in less than 1 in 100,000 people, caused by the hereditary loss of both copies of an FA gene. People with FA are born with skeletal abnormalities and often develop cancers early in life. Until now, experts did not believe the loss of only one FA gene also was disease-related. "Something we thought was not causing disease, we now suspect causes one of the worst forms of cancer," says Kern.

Pancreatic cancer has one of the lowest survival rates among all cancers. Each year, approximately 30,300 Americans are diagnosed with the disease, and nearly 30,000 die. Often unresponsive to conventional therapies, pancreatic cancer is the fourth leading cause of cancer death.

In addition to Kern, other participants in this study were Michiel S. van der Heijden, Charles J. Yeo, and Ralph H. Hruban.


This research was funded by a National Cancer Institute gastro-intestinal SPORE (Specialized Projects of Research Excellence) grant.

Valerie Matthews Mehl | EurekAlert!
Further information:
http://www.hopkinsmedicine.org
http://www.hopkinskimmelcancercenter.org

More articles from Health and Medicine:

nachricht 'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers
16.02.2018 | National University of Science and Technology MISIS

nachricht New process allows tailor-made malaria research
16.02.2018 | Eberhard Karls Universität Tübingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>