Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hopkins scientists uncover role of Fanconi’s Anemia genes in pancreatic cancer

15.05.2003


Scientists at the Johns Hopkins Kimmel Cancer Center have identified three genes, long linked to a rare inherited disease known as Fanconi’s Anemia (FA), that now appear to play a role in many cases of pancreatic cancer.



All of the genes identified, when functioning normally, are part of the DNA repair process. The work is reported in the May 15, 2003 issue of Cancer Research.

"What we think we have is a new genetic cause of some cases, approximately 10 percent or more, of pancreatic cancers, one of the most lethal forms of cancer," according to Scott Kern, M.D., professor of oncology and pathology at the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins and director of the study. The good news is that these genes offer new targets for improved treatment, he says.


The genes have all been associated with Fanconi’s Anemia. Those affected are born with only a single normal copy of one or more of the genes. Though they do not develop FA, these people often develop pancreatic cancer, usually in their 40s and 50s, about a decade earlier than average age of onset, according to Kern.

"The up side is that while these gene mutations cause a horrific disease, they may actually be the Achilles heel of the tumor and make these particular cancers more responsive to treatment," says Kern.

The culprit genes, including BRCA2, linked by other earlier studies to breast cancer, as well as two other genes FANCC and FANCG, appear to make pancreatic cancer cells highly susceptible to treatment with two FDA-approved cancer drugs mitomycin C and cisplatin. Human clinical trials are now being planned.

Normally, the genes are responsible for keeping DNA in good repair. As DNA is copied for cell replication, these genes compare the copies of DNA and fix any breaks. Mitomycin C and cisplatin work by causing the exact breaks these genes are supposed to repair. In the subset of patients whose pancreatic cancer is caused by mutations of these repair genes, the cancer cells are missing this repair mechanism making them unable to fix the breaks caused by the drugs, so the cancer cells should die, Kern says.

Both drugs are currently used in pancreatic cancer therapy, and though some remissions have been reported, the drugs have been largely ineffective. Kern suspects it’s a matter of a patient selection and dose.

Kern says preliminary laboratory and animal studies suggest low doses over a prolonged period of time may have the most benefit, and probably only in patients with FA gene mutations. He is now working with other investigators to develop clinical trials to study the drugs in patients with early onset disease, which may be caused by FA gene mutants.

In the study, the scientists examined a panel of human pancreatic cancers. They found mutations of FA-related genes in three of nine of tumor samples from patients aged 50 or younger. The researchers believe these mutations are common among the general population, estimating that about 1 in every 300 people have inherited a mutated copy of at least one FA gene.

"Our findings also tell us that cancers that appear to occur randomly in the population may not always really be so random," Kern says. "It is likely that the origin of many cancers could be traced back to similar inherited genetic mutations," says Kern.

People born with just one normal copy of the FA genes have an unfortunate head start on the cancer process, Kern says. If that one good copy is lost from dietary and/or environmental exposures, the cellular mistakes go unchecked, accelerating the initiation of cancer. He suspects these mutations could be responsible for a subset of other cancers as well, including certain breast, ovarian, and prostate cancers.

Fanconi’s Anemia occurs in less than 1 in 100,000 people, caused by the hereditary loss of both copies of an FA gene. People with FA are born with skeletal abnormalities and often develop cancers early in life. Until now, experts did not believe the loss of only one FA gene also was disease-related. "Something we thought was not causing disease, we now suspect causes one of the worst forms of cancer," says Kern.

Pancreatic cancer has one of the lowest survival rates among all cancers. Each year, approximately 30,300 Americans are diagnosed with the disease, and nearly 30,000 die. Often unresponsive to conventional therapies, pancreatic cancer is the fourth leading cause of cancer death.

In addition to Kern, other participants in this study were Michiel S. van der Heijden, Charles J. Yeo, and Ralph H. Hruban.


This research was funded by a National Cancer Institute gastro-intestinal SPORE (Specialized Projects of Research Excellence) grant.

Valerie Matthews Mehl | EurekAlert!
Further information:
http://www.hopkinsmedicine.org
http://www.hopkinskimmelcancercenter.org

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>