Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Putting genes in a pill

15.05.2003


Finding new ways to deliver gene therapy without using viruses as carriers is the aim of research by chemist Michael Nantz at UC Davis.



Nantz’s lab engineers lipids, oily molecules that can form a protective complex around DNA, to do the same job as a virus. The lipids protect the DNA and help it get into the target cell. The approach could eventually make gene therapy treatments that are stable enough to take as a pill.

Gene therapy holds the promise of curing diseases such as diabetes, cystic fibrosis or Parkinson’s disease by replacing damaged or missing genes. To do that, a new piece of DNA has to be carried into cells in the right part of the body.


Most approaches have used some kind of genetically modified virus to carry the DNA into the cell. But safety issues have been raised about that approach following the 1999 death of a patient at the University of Pennsylvania and cases of leukemia in two French children being treated for "Bubble baby syndrome."

When the lipid/DNA globule is taken up by a cell, it’s moved to an acid-filled compartment called the endosome. A key step, Nantz said, is to engineer lipids that can get the DNA out of the endosome and into the cell nucleus where most of the genetic material resides.

"What we’re doing is reinventing a virus through chemistry," he said.

In 1998, Nantz helped found a biotech company, Genteric Inc., to develop oral delivery systems for gene therapy. Because cells in the gut turn over quickly, the effect of the gene therapy drops over time. So the treatments can act more like a conventional medicine than a permanent genetic fix.

Andy Fell | EurekAlert!
Further information:
http://www.ucdavis.edu/

More articles from Health and Medicine:

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>