Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A lead in the rapid production of "intelligent" antibodies for diagnostic purposes

12.05.2003


Because they are able to recognize a particular cell marker — a protein — antibodies are generally used to identify abnormal cells in the body. As such, they play a key role in diagnosis, treatment and basic research.



At the Institut Curie, CNRS research scientists have recently prepared a new type of antibody which for the first time combines several crucial features: it can be produced in a few days, it can be expressed directly in cells, and it is, moreover, sensitive to the shape of proteins. The latter property is particularly important as the activity of proteins depends on their shape. Thus certain cancers or illnesses such as Creutzfeldt-Jakob disease are due to a protein that has assumed an abnormal shape.
This study, which constitutes a technological advance both for basic research and diagnosis, is published in the 9 May 2003 issue of Science.

All stages in the life of a cell are controlled by the activity of proteins. Proteins enable cells to produce energy, to reproduce and to interact with their environment. All these processes must be closely monitored to avoid pathological dysfunction.



To enhance understanding of the normal and pathological function of cells, it is therefore necessary to monitor gene expression, but also to analyze the behavior of the proteins themselves. This is where antibodies prove valuable.

In research, scientists conventionally track proteins using antibodies coupled to fluorescent molecules or to metal microbeads. In medicine, antibodies are routinely used in diagnosis to detect tumor markers in biopsied material and so to determine the nature of a tumor or to identify the origin of a metastasis.

We are rapidly acquiring knowledge of proteins and their roles (proteomics) in diseases like cancer. To study these proteins and to transfer rapidly the resulting knowledge to medical practice, we need to optimize the identification of new, highly selective antibodies.

The quality of the antibodies depends on their specificity for proteins. The capacity of antibodies to detect proteins inside cells is also an advantage. We are now able to prepare and then humanize (1) antibodies, but the task now is to hasten their identification, which currently takes several months, and to ameliorate their selectivity so that they are capable of recognizing fine differences between proteins.

Proteins as "biological switches"

Many proteins regulate their activity and hence their function by altering shape (conformation). In this way some act as biological switches: they switch from an "inactive" to an "active" position, thus enabling them to interact with other proteins. By distinguishing between these two forms we can provide additional information for scientists studying cell function, but also for physicians making diagnoses.

When a protein with a key role in cell function is blocked in one conformation, the cell becomes uncontrolled and in particular this may trigger the formation of a tumor. For example, mutations in the Ras gene, which are found in 30 to 60% of human cancers, give rise to a constitutively active form of the protein, leading to severe disruption of signal transmission within the cells. In general, proteins are more active in tumor tissues and may therefore serve as markers.

Accelerated production of "intelligent" antibodies

Using a library of several billion human antibodies (2), the group of Franck Perez, in Bruno Goud’’s team at the Institut Curie (3), has succeeded in just a few weeks in preparing in vitro antibodies against the active form of the intracellular protein Rab6 (4).

The antibody library also indicated which gene codes for this antibody. Perez and colleagues were therefore able to introduce this gene into the cells where its expression led to production of the antibody.

This is the first production of synthetic antibodies of human origin that are both sensitive to protein conformation and can also be expressed directly in living cells. This enables Rab6 to be tracked in real time and solely in its active form inside cells. This wholly in vitro technique of producing antibodies also has the advantage of being inexpensive and applicable to many other proteins, or even to complexes of proteins.

By combining for the first time in the same antibody sensitivity to protein conformation, rapid identification and expression in living cells, Perez and colleagues have taken a new step forward in what can be considered as an innovative diagnostic approach. It may prove possible to use such antibodies to detect the pathological forms of proteins, such as the prion (5) in Creutzfeldt-Jakob disease, or a protein blocked in a particular form, as in the case of Ras protein in certain cancers.

Catherine Goupillon | alfa

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>