Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A lead in the rapid production of "intelligent" antibodies for diagnostic purposes

12.05.2003


Because they are able to recognize a particular cell marker — a protein — antibodies are generally used to identify abnormal cells in the body. As such, they play a key role in diagnosis, treatment and basic research.



At the Institut Curie, CNRS research scientists have recently prepared a new type of antibody which for the first time combines several crucial features: it can be produced in a few days, it can be expressed directly in cells, and it is, moreover, sensitive to the shape of proteins. The latter property is particularly important as the activity of proteins depends on their shape. Thus certain cancers or illnesses such as Creutzfeldt-Jakob disease are due to a protein that has assumed an abnormal shape.
This study, which constitutes a technological advance both for basic research and diagnosis, is published in the 9 May 2003 issue of Science.

All stages in the life of a cell are controlled by the activity of proteins. Proteins enable cells to produce energy, to reproduce and to interact with their environment. All these processes must be closely monitored to avoid pathological dysfunction.



To enhance understanding of the normal and pathological function of cells, it is therefore necessary to monitor gene expression, but also to analyze the behavior of the proteins themselves. This is where antibodies prove valuable.

In research, scientists conventionally track proteins using antibodies coupled to fluorescent molecules or to metal microbeads. In medicine, antibodies are routinely used in diagnosis to detect tumor markers in biopsied material and so to determine the nature of a tumor or to identify the origin of a metastasis.

We are rapidly acquiring knowledge of proteins and their roles (proteomics) in diseases like cancer. To study these proteins and to transfer rapidly the resulting knowledge to medical practice, we need to optimize the identification of new, highly selective antibodies.

The quality of the antibodies depends on their specificity for proteins. The capacity of antibodies to detect proteins inside cells is also an advantage. We are now able to prepare and then humanize (1) antibodies, but the task now is to hasten their identification, which currently takes several months, and to ameliorate their selectivity so that they are capable of recognizing fine differences between proteins.

Proteins as "biological switches"

Many proteins regulate their activity and hence their function by altering shape (conformation). In this way some act as biological switches: they switch from an "inactive" to an "active" position, thus enabling them to interact with other proteins. By distinguishing between these two forms we can provide additional information for scientists studying cell function, but also for physicians making diagnoses.

When a protein with a key role in cell function is blocked in one conformation, the cell becomes uncontrolled and in particular this may trigger the formation of a tumor. For example, mutations in the Ras gene, which are found in 30 to 60% of human cancers, give rise to a constitutively active form of the protein, leading to severe disruption of signal transmission within the cells. In general, proteins are more active in tumor tissues and may therefore serve as markers.

Accelerated production of "intelligent" antibodies

Using a library of several billion human antibodies (2), the group of Franck Perez, in Bruno Goud’’s team at the Institut Curie (3), has succeeded in just a few weeks in preparing in vitro antibodies against the active form of the intracellular protein Rab6 (4).

The antibody library also indicated which gene codes for this antibody. Perez and colleagues were therefore able to introduce this gene into the cells where its expression led to production of the antibody.

This is the first production of synthetic antibodies of human origin that are both sensitive to protein conformation and can also be expressed directly in living cells. This enables Rab6 to be tracked in real time and solely in its active form inside cells. This wholly in vitro technique of producing antibodies also has the advantage of being inexpensive and applicable to many other proteins, or even to complexes of proteins.

By combining for the first time in the same antibody sensitivity to protein conformation, rapid identification and expression in living cells, Perez and colleagues have taken a new step forward in what can be considered as an innovative diagnostic approach. It may prove possible to use such antibodies to detect the pathological forms of proteins, such as the prion (5) in Creutzfeldt-Jakob disease, or a protein blocked in a particular form, as in the case of Ras protein in certain cancers.

Catherine Goupillon | alfa

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>