Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A lead in the rapid production of "intelligent" antibodies for diagnostic purposes

12.05.2003


Because they are able to recognize a particular cell marker — a protein — antibodies are generally used to identify abnormal cells in the body. As such, they play a key role in diagnosis, treatment and basic research.



At the Institut Curie, CNRS research scientists have recently prepared a new type of antibody which for the first time combines several crucial features: it can be produced in a few days, it can be expressed directly in cells, and it is, moreover, sensitive to the shape of proteins. The latter property is particularly important as the activity of proteins depends on their shape. Thus certain cancers or illnesses such as Creutzfeldt-Jakob disease are due to a protein that has assumed an abnormal shape.
This study, which constitutes a technological advance both for basic research and diagnosis, is published in the 9 May 2003 issue of Science.

All stages in the life of a cell are controlled by the activity of proteins. Proteins enable cells to produce energy, to reproduce and to interact with their environment. All these processes must be closely monitored to avoid pathological dysfunction.



To enhance understanding of the normal and pathological function of cells, it is therefore necessary to monitor gene expression, but also to analyze the behavior of the proteins themselves. This is where antibodies prove valuable.

In research, scientists conventionally track proteins using antibodies coupled to fluorescent molecules or to metal microbeads. In medicine, antibodies are routinely used in diagnosis to detect tumor markers in biopsied material and so to determine the nature of a tumor or to identify the origin of a metastasis.

We are rapidly acquiring knowledge of proteins and their roles (proteomics) in diseases like cancer. To study these proteins and to transfer rapidly the resulting knowledge to medical practice, we need to optimize the identification of new, highly selective antibodies.

The quality of the antibodies depends on their specificity for proteins. The capacity of antibodies to detect proteins inside cells is also an advantage. We are now able to prepare and then humanize (1) antibodies, but the task now is to hasten their identification, which currently takes several months, and to ameliorate their selectivity so that they are capable of recognizing fine differences between proteins.

Proteins as "biological switches"

Many proteins regulate their activity and hence their function by altering shape (conformation). In this way some act as biological switches: they switch from an "inactive" to an "active" position, thus enabling them to interact with other proteins. By distinguishing between these two forms we can provide additional information for scientists studying cell function, but also for physicians making diagnoses.

When a protein with a key role in cell function is blocked in one conformation, the cell becomes uncontrolled and in particular this may trigger the formation of a tumor. For example, mutations in the Ras gene, which are found in 30 to 60% of human cancers, give rise to a constitutively active form of the protein, leading to severe disruption of signal transmission within the cells. In general, proteins are more active in tumor tissues and may therefore serve as markers.

Accelerated production of "intelligent" antibodies

Using a library of several billion human antibodies (2), the group of Franck Perez, in Bruno Goud’’s team at the Institut Curie (3), has succeeded in just a few weeks in preparing in vitro antibodies against the active form of the intracellular protein Rab6 (4).

The antibody library also indicated which gene codes for this antibody. Perez and colleagues were therefore able to introduce this gene into the cells where its expression led to production of the antibody.

This is the first production of synthetic antibodies of human origin that are both sensitive to protein conformation and can also be expressed directly in living cells. This enables Rab6 to be tracked in real time and solely in its active form inside cells. This wholly in vitro technique of producing antibodies also has the advantage of being inexpensive and applicable to many other proteins, or even to complexes of proteins.

By combining for the first time in the same antibody sensitivity to protein conformation, rapid identification and expression in living cells, Perez and colleagues have taken a new step forward in what can be considered as an innovative diagnostic approach. It may prove possible to use such antibodies to detect the pathological forms of proteins, such as the prion (5) in Creutzfeldt-Jakob disease, or a protein blocked in a particular form, as in the case of Ras protein in certain cancers.

Catherine Goupillon | alfa

More articles from Health and Medicine:

nachricht World first: Massive thrombosis removed during early pregnancy
20.07.2017 | Universitätsspital Bern

nachricht Therapy of preterm birth in sight?
19.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>