Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Retinal prosthesis trial completes first phase of testing

09.05.2003


One-year results presented at annual ophthalmology meeting



Researchers from the Keck School of Medicine of the University of Southern California, its Doheny Retina Institute and Second Sight, LLC, are reporting on the initial results of their groundbreaking, FDA-approved feasibility trial of an intraocular retinal prosthesis that appears to be able to restore some degree of sight to the blind.

"We have successfully completed enrollment and implantation of three patients in the trial," says Mark Humayun, M.D., professor of ophthalmology at the Keck School. "And we have found that the devices are indeed electrically conducting, and can be used by the patients to detect light or even to distinguish between objects such as a cup or plate in forced choice tests conducted with one patient so far."


The results are being presented at the Retinal Prosthesis I session of the annual meeting of the Association for Research in Vision and Ophthalmology, or ARVO, being held this week in Fort Lauderdale, Fla. Humayun, who is moderator of the session, is also presenting a paper detailing the results of the trial. In addition, he and his group from USC’s Doheny Retina Institute displayed six posters in sessions throughout the week. (Posters are embargoed until the time of their presentation.)

The microelectronic retinal prosthesis used in this first phase of the trial is intended to stand in for the damaged retinal cells in people suffering from such blinding diseases as retinitis pigmentosa and macular degeneration. The implant measures 4 millimeters by 5 millimeters, and is studded with 16 electrodes in a 4-by-4 array. The device has been developed by Sylmar, Calif.-based Second Sight, LLC: www.2-sight.com

The first participant in the trial underwent surgery to receive the implant in February of 2002. Patient #2 received the implant in July 2002, and patient #3 underwent surgery in March of 2003.

The retinal prosthesis-a sliver of silicone and platinum that is often incorrectly referred to as an ’eye chip’-is attached to and sits atop the retina. It works by electrically stimulating the remaining healthy retinal cells via the array of electrodes; the retinal cells, in turn, pass on the visual information to the brain via the optic nerve.

Initial tests in the three implanted patients have shown that they can perceive light on each of the 16 electrodes. Testing conducted so far in some of the patients with the microelectronic implant revealed that they were capable of detecting when a light is turned on or off, describing the motion of an object, and even counting discrete objects.

The first tests of the prosthesis in all three patients involved computer-generated points of light sent directly to the implant, says Humayun. Over time, they were ’graduated’ to images received by an external video camera. These images are sent to the intraocular electrode array attached to the retina via a receiver that is implanted behind the patient’s ear during the implant surgery. The signal is then recreated by stimulating the appropriate electrodes in the prosthesis.

Testing on the three patients is ongoing, says Humayun. "We plan in the near future to look at how useful the prosthesis can be in activities of daily living," he notes.


In addition to Humayun, the researchers involved in this work include Keck School researchers Eugene de Juan Jr., M.D., Douglas Yanai, M.D., Manjunatha Mahadevappa, Ph.D., Gretchen van Boemel, Ph.D., Gildo Fujii, M.D., and James Weiland, Ph.D., as well as Robert Greenberg, M.D., Ph.D., president of Second Sight, LLC, and other Second Sight scientists.

The National Institutes of Health/National Eye Institute and Second Sight, LLC, provided funding to support the research and development of the retinal prosthesis implanted in this trial. The National Science Foundation, the Department of Energy, the Office of Naval Research, the Whitaker Foundation, The Foundation Fighting Blindness, the Defense Advanced Research Projects Agency and Second Sight, LLC, have provided other funding toward the development of a retinal prosthesis.

For copies of abstracts online, go to www.arvo.org and click on the annual meeting link. Posters relating to this paper were or will be displayed in poster sessions 5056 (B715), 5059 (B718), 5060 (B719), 5079 (B738), 5081 (B740), and 5085 (B744); posters are embargoed until the time of their presentation.

Jon Weiner | EurekAlert!
Further information:
http://www.arvo.org

More articles from Health and Medicine:

nachricht Custom-tailored strategy against glioblastomas
26.09.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New leukemia treatment offers hope
23.09.2016 | King Abdullah University of Science and Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

 
Latest News

New imaging technique in Alzheimer’s disease - opens up possibilities for new drug development

28.09.2016 | Medical Engineering

Innovate coating extends the life of materials for industrial use

28.09.2016 | Materials Sciences

Blockchain Set to Transform the Financial Services Market

28.09.2016 | Business and Finance

VideoLinks
B2B-VideoLinks
More VideoLinks >>>