Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Doctors focus on pupil size for safety of laser vision correction

07.05.2003


Exactly how a person’s eyes respond to low levels of light is even more crucial than doctors have thought in deciding who is and who isn’t a good candidate to have laser vision correction surgery, according to results announced today at the annual meeting of the Association for Research in Vision and Ophthalmology in Ft. Lauderdale. The findings should help doctors choose patients who are likely to fare well with the surgery, and to forego recommending treatment for others.


Dr. Scott MacRae taking light measurements along the roadways in Rochester.


Dr. Scott MacRae taking light measurements along the roadways in Rochester



In the earliest days of laser vision correction, some patients complained of worsened night vision after the surgery – some reported significant glare from light sources such as headlights at night, while others saw halos around bright lights. Occasionally, though much more rarely, patients undergoing the procedure still report such side effects.

Ophthalmologist Scott MacRae, M.D., professor of Ophthalmology and Visual Science at the University of Rochester Medical Center, recently studied the role of a patient’s pupil size in determining a patient’s outcome from the surgery. In a study of 340 patients, he found that generally the larger a patient’s pupils, the more likely that person is to have a problem with laser vision correction. MacRae also discussed the results at the recent annual meeting of the Association for Cataract and Refractive Surgery in San Francisco.


“This is not a problem for most people,” says MacRae, “but as the procedure becomes more common, we have to make sure that we remain vigilant to protect and enhance people’s eyesight.”

MacRae is part of a team that has used a technology known as adaptive optics to discover dozens of previously unknown subtle imperfections in the eye, and he has found that those imperfections loom more important as the pupil size gets larger. He reports that if a surgeon treats a large enough swath of the eye for such patients, those imperfections are minimized. His study shows that it’s essential that doctors treating patients with large pupils consider creating an especially large treatment zone.

He found that doctors must be especially careful when using a laser to correct vision on people whose pupils dilate to six millimeters or more, a group that comprises about 40 percent of the population. If physicians treat too small an area of the cornea, patients are likely to have a problem when their eyes are most dilated – at night.

To understand the problem, think of a window washer who should clean an entire window even when the inside blind is partway down. When the blind goes up, a person looking through the window wouldn’t get a clear view unless the previously covered section of the window was washed too. Likewise, MacRae says, surgeons must treat a large part of the cornea so that when the pupil widens, the entire pupil transmits light clearly.

Pupil size is especially critical if a person is extremely near-sighted. MacRae says that generally, people with pupils larger than seven millimeters should be checked very thoroughly before having the surgery done.

MacRae measures every patient’s pupils three different times using three separate instruments. He also makes three measurements of the thickness of the cornea, another crucial element in deciding who is a safe candidate. Overall he advises against surgery in more than 20 percent of patients who inquire about the surgery, especially patients who have large pupils and are extremely nearsighted.

“Oftentimes I’ll have a patient who is initially upset because I won’t treat them, but they become grateful as they realize that we’ve done what is best for them in the long run,” he says. “When the pupil dilates, aberrations can be troubling. You have to be really careful. Patients need to be wary of surgical centers that trivialize these issues.”

In recent months MacRae has taken to driving around Rochester-area roads at night to measure just how much light typically enters a person’s eye, to get a grasp on how wide their pupils are while they’re on the road. He has found that conditions change markedly from one street to the next – information that perhaps won’t surprise drivers but which hasn’t been tapped by ophthalmologists whose patients report night driving as one of their biggest concerns.

“There is tremendous variation, depending on where your eye is looking,” MacRae says. “Country roads can be nearly completely dark, while city streets are often brightly lit.” He found that the amount of light entering a driver’s eye on a country road during a rainy night might be 200 times less than what he or she encounters driving through a busy intersection seconds later. He also found that a typical night driver frequently confronts situations where he or she has less than one-tenth the amount of light that doctors, in their offices, assume their patients encounter at night.

Tom Rickey | EurekAlert!
Further information:
http://www.urmc.rochester.edu/

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>