Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Staph Infection Process Leading to B Cell Suicide Described for First Time

05.05.2003


Enhances Potential for Future Development of B-Cell Based Therapy for Lupus



Researchers at the University of California, San Diego—supported by the Alliance for Lupus Research and the National Institutes of Health—have for the first time described a method that Staphylococcus aureus (staph) infection uses to inactivate the body’s immune system. A protein produced by the staph bacteria causes previously healthy B cells—a specialized cell of the immune system—to commit suicide, a process called apoptosis. The research will be published in the May 5 issue of the Journal of Experimental Medicine and at http://www.jem.org/pap.shtml on April 28.

In the new study, the researchers found that SpA, a staph protein, functions as a B cell toxin in mice. The protein attaches to a receptor on B cells, eventually causing the B cells to turn on themselves in a suicide process.


Researchers believe that B cells play a major role in tissue damage that occurs in lupus. “By the targeted elimination of disease-causing B cells, properly dosed injections of SpA may have the potential to control the over-activity of the immune system that causes damage in autoimmune diseases like lupus and in certain cancers,” said Gregg Silverman, M.D., UCSD professor of medicine and senior author of the paper.

“The significance of Dr. Silverman’s research is that the discovery that injections of SpA limit the activity of B cells in animals allows us to proceed to the next step, to test the protein’s usefulness in people,” said John H. Klippel, MD, scientific director of the Alliance for Lupus Research, which funded this study. “If results hold true for people, SpA may eventually prove to be an effective treatment for lupus.”

In addition to Silverman, the study was conducted by the paper’s co-author Carl S. Goodyear, Ph.D., a UCSD postdoctoral researcher.

The study was funded by the National Institutes of Health and the Alliance for Lupus Research. The ALR was founded by Robert Wood Johnson IV, of the Johnson & Johnson healthcare family and owner of the NFL’s New York Jets, with the Arthritis Foundation to raise the profile and scope of lupus research. Since its inception in 1999, the Alliance has committed more than $24 million to research, and has made remarkable gains toward unlocking the mysteries of this disease. ALR directs 100 percent of funds raised to peer-reviewed research and scientific programs. It recently received the highest rating (four stars) from Charity Navigator, an independent resource that evaluates the effectiveness and financial health of more than 2,300 charities.

For more information on our press releases, contact:
Linda De Vito
The Graubard Group
(212) 966-9000
ldevito@graubardgroup.com

Linda De Vito | Alliance for Lupus Research
Further information:
http://www.lupusresearch.org
http://www.lupusresearch.org/press_may1.html
http://www.jem.org/pap.shtml

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>