Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UIC researchers discover how HIV rapidly infects immune cells

02.05.2003


Solving a longstanding scientific puzzle, researchers at the University of Illinois at Chicago have not only discovered how the body’s first line of defense against dangerous microbes inadvertently helps HIV rapidly infect the human immune system.



They’ve filmed the process as well.

In a remarkable series of movies created with images from time-lapse microscopy, UIC microbiologists Thomas Hope and David McDonald have documented how HIV enters human T cells, where it multiplies with abandon and eventually subverts the entire immune system, causing AIDS.


The movies show how HIV co-opts the very mechanism the body has evolved to defend itself against such pathogens.

"A picture is worth a thousand words," Hope said, quoting a colleague at a recent scientific meeting. "A video is worth a million."

The paper detailing the findings was accepted for publication in Science less than two weeks ago and was rushed to print in the May 1 online version of the journal called Science Express, which highlights scientifically important and newsworthy studies.

In the early stages of any infection, the dendritic cells of the immune system -- the first responders -- spring into action. These are the "garbage men of the body," as Hope calls them, constantly patrolling the neighborhood, looking for garbage to clean up.

Normally, when the dendritic cells find a piece of garbage -- a virus or other pathogen -- they pick it up and degrade it into tiny bits. They then show those bits to the T cells, alerting these executives of the garbage company to the potential danger.

The dendritic cells do this by making physical contact with the T cells, forming a tight interface, called an immunological synapse, through which the cells talk to one another via molecular signals.

If they make the right connection, the T cells then mobilize the rest of the immune system, sending out the trucks -- other immune cells -- to hunt for the garbage that the dendritic cells spotted, destroy the material, and save the body from disease.

While dendritic cells pick up HIV, however, they don’t destroy all the virus. Instead, scientists recently discovered, they inadvertently encourage infection, somehow helping HIV more rapidly infect the T cells.

McDonald said the "somehow" has now been answered.

Using a fluorescent dye that makes HIV particles glow green, Hope and McDonald photographed living dendritic cells with HIV particles inside. When the cells made contact with other cells, the HIV particles began streaming toward the juncture.

Not only that, but certain surface proteins on T cells necessary for infection by HIV also moved to the point of contact.

Further images clearly showed HIV particles transferring from the dendritic cells into the T cells through that same site -- the "infectious synapse," as the researchers call it.

Just as the immunological synapse signals the start of the immune response, so the infectious synapse jump-starts infection.

"HIV exploits the dendritic machinery for its own ends, taking advantage of the cells’ special relationship with T cells to gain entry and launch its assault," McDonald said. "Moreover, HIV doesn’t get destroyed in the process."

"What viruses do is try to find weak points in the immune system and take advantage of them," Hope said. "It’s a billion-year-old war: the body builds defenses against viruses, and the viruses find ways to thwart those defenses."

The researchers are particularly excited about their finding because it may apply to other pathogens. Recent studies have shown that Ebola virus, cytomegalovirus and the bacterium that causes tuberculosis all hitch rides on the dendritic cells just as HIV does.

"These pathogens appear to have discovered the same weak point in the immune system and exploited it," Hope said. "If true, then we may have discovered an important target for therapies that would combat not just HIV but many infectious diseases."

Sharon Butler | EurekAlert!
Further information:
http://www.uic.edu/

More articles from Health and Medicine:

nachricht World first: Massive thrombosis removed during early pregnancy
20.07.2017 | Universitätsspital Bern

nachricht Therapy of preterm birth in sight?
19.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>