Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UIC researchers discover how HIV rapidly infects immune cells

02.05.2003


Solving a longstanding scientific puzzle, researchers at the University of Illinois at Chicago have not only discovered how the body’s first line of defense against dangerous microbes inadvertently helps HIV rapidly infect the human immune system.



They’ve filmed the process as well.

In a remarkable series of movies created with images from time-lapse microscopy, UIC microbiologists Thomas Hope and David McDonald have documented how HIV enters human T cells, where it multiplies with abandon and eventually subverts the entire immune system, causing AIDS.


The movies show how HIV co-opts the very mechanism the body has evolved to defend itself against such pathogens.

"A picture is worth a thousand words," Hope said, quoting a colleague at a recent scientific meeting. "A video is worth a million."

The paper detailing the findings was accepted for publication in Science less than two weeks ago and was rushed to print in the May 1 online version of the journal called Science Express, which highlights scientifically important and newsworthy studies.

In the early stages of any infection, the dendritic cells of the immune system -- the first responders -- spring into action. These are the "garbage men of the body," as Hope calls them, constantly patrolling the neighborhood, looking for garbage to clean up.

Normally, when the dendritic cells find a piece of garbage -- a virus or other pathogen -- they pick it up and degrade it into tiny bits. They then show those bits to the T cells, alerting these executives of the garbage company to the potential danger.

The dendritic cells do this by making physical contact with the T cells, forming a tight interface, called an immunological synapse, through which the cells talk to one another via molecular signals.

If they make the right connection, the T cells then mobilize the rest of the immune system, sending out the trucks -- other immune cells -- to hunt for the garbage that the dendritic cells spotted, destroy the material, and save the body from disease.

While dendritic cells pick up HIV, however, they don’t destroy all the virus. Instead, scientists recently discovered, they inadvertently encourage infection, somehow helping HIV more rapidly infect the T cells.

McDonald said the "somehow" has now been answered.

Using a fluorescent dye that makes HIV particles glow green, Hope and McDonald photographed living dendritic cells with HIV particles inside. When the cells made contact with other cells, the HIV particles began streaming toward the juncture.

Not only that, but certain surface proteins on T cells necessary for infection by HIV also moved to the point of contact.

Further images clearly showed HIV particles transferring from the dendritic cells into the T cells through that same site -- the "infectious synapse," as the researchers call it.

Just as the immunological synapse signals the start of the immune response, so the infectious synapse jump-starts infection.

"HIV exploits the dendritic machinery for its own ends, taking advantage of the cells’ special relationship with T cells to gain entry and launch its assault," McDonald said. "Moreover, HIV doesn’t get destroyed in the process."

"What viruses do is try to find weak points in the immune system and take advantage of them," Hope said. "It’s a billion-year-old war: the body builds defenses against viruses, and the viruses find ways to thwart those defenses."

The researchers are particularly excited about their finding because it may apply to other pathogens. Recent studies have shown that Ebola virus, cytomegalovirus and the bacterium that causes tuberculosis all hitch rides on the dendritic cells just as HIV does.

"These pathogens appear to have discovered the same weak point in the immune system and exploited it," Hope said. "If true, then we may have discovered an important target for therapies that would combat not just HIV but many infectious diseases."

Sharon Butler | EurekAlert!
Further information:
http://www.uic.edu/

More articles from Health and Medicine:

nachricht Custom-tailored strategy against glioblastomas
26.09.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New leukemia treatment offers hope
23.09.2016 | King Abdullah University of Science and Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

 
Latest News

New imaging technique in Alzheimer’s disease - opens up possibilities for new drug development

28.09.2016 | Medical Engineering

Innovate coating extends the life of materials for industrial use

28.09.2016 | Materials Sciences

Blockchain Set to Transform the Financial Services Market

28.09.2016 | Business and Finance

VideoLinks
B2B-VideoLinks
More VideoLinks >>>