Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UIC researchers discover how HIV rapidly infects immune cells

02.05.2003


Solving a longstanding scientific puzzle, researchers at the University of Illinois at Chicago have not only discovered how the body’s first line of defense against dangerous microbes inadvertently helps HIV rapidly infect the human immune system.



They’ve filmed the process as well.

In a remarkable series of movies created with images from time-lapse microscopy, UIC microbiologists Thomas Hope and David McDonald have documented how HIV enters human T cells, where it multiplies with abandon and eventually subverts the entire immune system, causing AIDS.


The movies show how HIV co-opts the very mechanism the body has evolved to defend itself against such pathogens.

"A picture is worth a thousand words," Hope said, quoting a colleague at a recent scientific meeting. "A video is worth a million."

The paper detailing the findings was accepted for publication in Science less than two weeks ago and was rushed to print in the May 1 online version of the journal called Science Express, which highlights scientifically important and newsworthy studies.

In the early stages of any infection, the dendritic cells of the immune system -- the first responders -- spring into action. These are the "garbage men of the body," as Hope calls them, constantly patrolling the neighborhood, looking for garbage to clean up.

Normally, when the dendritic cells find a piece of garbage -- a virus or other pathogen -- they pick it up and degrade it into tiny bits. They then show those bits to the T cells, alerting these executives of the garbage company to the potential danger.

The dendritic cells do this by making physical contact with the T cells, forming a tight interface, called an immunological synapse, through which the cells talk to one another via molecular signals.

If they make the right connection, the T cells then mobilize the rest of the immune system, sending out the trucks -- other immune cells -- to hunt for the garbage that the dendritic cells spotted, destroy the material, and save the body from disease.

While dendritic cells pick up HIV, however, they don’t destroy all the virus. Instead, scientists recently discovered, they inadvertently encourage infection, somehow helping HIV more rapidly infect the T cells.

McDonald said the "somehow" has now been answered.

Using a fluorescent dye that makes HIV particles glow green, Hope and McDonald photographed living dendritic cells with HIV particles inside. When the cells made contact with other cells, the HIV particles began streaming toward the juncture.

Not only that, but certain surface proteins on T cells necessary for infection by HIV also moved to the point of contact.

Further images clearly showed HIV particles transferring from the dendritic cells into the T cells through that same site -- the "infectious synapse," as the researchers call it.

Just as the immunological synapse signals the start of the immune response, so the infectious synapse jump-starts infection.

"HIV exploits the dendritic machinery for its own ends, taking advantage of the cells’ special relationship with T cells to gain entry and launch its assault," McDonald said. "Moreover, HIV doesn’t get destroyed in the process."

"What viruses do is try to find weak points in the immune system and take advantage of them," Hope said. "It’s a billion-year-old war: the body builds defenses against viruses, and the viruses find ways to thwart those defenses."

The researchers are particularly excited about their finding because it may apply to other pathogens. Recent studies have shown that Ebola virus, cytomegalovirus and the bacterium that causes tuberculosis all hitch rides on the dendritic cells just as HIV does.

"These pathogens appear to have discovered the same weak point in the immune system and exploited it," Hope said. "If true, then we may have discovered an important target for therapies that would combat not just HIV but many infectious diseases."

Sharon Butler | EurekAlert!
Further information:
http://www.uic.edu/

More articles from Health and Medicine:

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>