Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Discover Effective Method For Killing Prostate Cancer Cells

30.04.2003


By blocking a protein key to prostate cancer cell growth, researchers at the Lombardi Cancer Center at Georgetown University have discovered a way to trigger extensive prostate cancer cell death. This finding opens a new window for developing targeted treatments aimed at destroying prostate cancer cells before they have the opportunity to grow or spread. The study is published in the April 29 online issue of the Journal of Biological Chemistry.



“By preventing the Stat5 protein from being active, we were able to effectively kill human prostate cells,” said Marja Nevalainen, MD, PhD, assistant professor of oncology at Georgetown University Medical Center. "It’s similar to using a weed killer -- poison ivy cannot take over the backyard if we don’t allow the leaves to breathe. If we stop this protein, which in turn stops the growth of prostate cancer cells, we are one step closer to managing the spread and growth of cancer in the prostate.”

Recent understanding of the correlation between prolactin, a hormone produced by male and female pituitary glands, and how it promotes growth of cells in the prostate led to this new study. Pioneering work by Dr. Nevalainen and colleagues established that prolactin serves as a local growth factor for prostate cells and that Stat5 is the specific signaling device for prolactin in prostate cells. In other words, Stat5 acts as an internal signaling device within the cell, receiving and sending messages of prolactin to the cell’s DNA.


In the new study, Nevalainen explored what happens if the activation of Stat5 in prostate cancer cells is blocked. Using human prostate cancer cell lines and viral gene delivery of an inhibitory mutant of Stat5, Nevalainen and her colleagues found that blocking the activity of this protein in prostate cancer cells will trigger extensive cell death.

“Once prostate cancer has metastasized, or spread, men have few treatment options other than chemotherapy and radiation,” said Nevalainen. “This finding could certainly lead to the development of new targeted therapeutics that can put the brakes on the growth of prostate cancer cells, allowing us to kill tumor cells, reduce the volume of tumors, and kill already metastasized cells.”

This study was funded by the National Cancer Institute (NCI).

Prostate cancer is the second leading cause of cancer death in men, exceeded only by lung cancer. According to the American Cancer Society, prostate cancer is the most common type of cancer found in American men, other than skin cancer. The ACS estimates that there will be about 220,900 new cases of prostate cancer in the United States in the year 2003. About 28,900 men will die of this disease. African-American men are disproportionately affected by the disease.

Lindsey Spindle | georgetown news
Further information:
http://www.georgetown.edu/gumc
http://gumc.georgetown.edu/communications/releases/release.cfm?ObjectID=274

More articles from Health and Medicine:

nachricht 'Icebreaker' protein opens genome for t cell development, Penn researchers find
21.02.2018 | University of Pennsylvania School of Medicine

nachricht Similarities found in cancer initiation in kidney, liver, stomach, pancreas
21.02.2018 | Washington University School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>