Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enzyme found in blood vessels likely target to treat lung injury

30.04.2003


Lung injury due to infection, such as in sepsis, accounts for hundreds of thousands of hospitalizations a year. Sepsis occurs in 2 percent of hospital admissions and is associated with a death rate of about 50 percent. Many of these patients require ventilation to support their breathing, which may in itself produce additional injury to the lung. Yet, there are few available treatments for lung injury associated with sepsis or ventilation.



Now, scientists at Northwestern University have demonstrated that an enzyme vital to normal function of blood vessels also can be an Achilles heel during infection-induced or ventilator-induced lung injury. They believe that the enzyme holds significant potential as a drug discovery target for the treatment of acute lung injury.

As described in the May issue of Proceedings of the National Academy of Sciences, Mark Wainwright, M.D., and D. Martin Watterson identified a molecule, called myosin light chain kinase 210 (MLCK 210), that makes endothelial cells in the lung susceptible to injury during periods of inflammation.


Wainwright is assistant professor of pediatrics at the Feinberg School of Medicine at Northwestern University and a researcher at the Children’s Memorial Institute for Education and Research. Watterson is J.G. Searle Professor of Molecular Biology and Biochemistry, professor of molecular pharmacology and biological chemistry at the Feinberg School and director of the Northwestern University Drug Discovery Training Program.

Endothelial cells line blood vessels throughout the body and serve as a barrier to keep toxins in the blood from entering tissues and organs. MLCK 210 regulates normal endothelial cell function, but the contribution of MLCK 210 to the mechanisms of lung injury in the living animal was unknown.

Wainwright said that cell culture (or, in vitro) studies have identified several enzymes, including MLCK 210, in the regulation of endothelial barrier function, but no one had integrated the in vitro studies with disease injury and MLCK 210 function in a living animal.

Watterson genetically engineered mice that are missing the gene that codes for MLCK 210. The researchers exposed mice lacking MLCK 210 to a bacterial toxin that causes tissue injury as a result of severe infection. The MLCK 210 knockout mice are less susceptible to acute lung injury and also showed significant improvement in survival when exposed to a combination of toxin exposure and subsequent ventilator-induced injury.

This sequential injury is reminiscent of the clinical situation with life support for a critically ill patient.

The researchers also developed an MLCK inhibitor, an experimental drug that blocks the function of the enzyme, which they injected into normal mice with an intact MLCK 210 gene.

Normal mice exposed to bacterial toxin and ventilator-induced injury were protected by a single injection of the MLCK 210 inhibitor, a finding identical to that in the genetically altered mice lacking the MLCK 210 gene.

The researchers believe that their results and will enable scientists to conduct further studies involving the role of endothelial cells in heart disease, stroke and neurodegeneration, areas that the National Institutes of health has identified as a key research priority.

Co-authors were Janet Rossi; James Schavocky; Susan Crawford; David Steinhorn; Anastasia V. Velentza; Magdalena Zasadzki; Vladimir Shirinsky; Yuzhi Jia; Jacques Haiech; and Linda Van Eldik.

Elizabeth Crown | EurekAlert!
Further information:
http://www.nwu.edu/

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>