Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enzyme found in blood vessels likely target to treat lung injury

30.04.2003


Lung injury due to infection, such as in sepsis, accounts for hundreds of thousands of hospitalizations a year. Sepsis occurs in 2 percent of hospital admissions and is associated with a death rate of about 50 percent. Many of these patients require ventilation to support their breathing, which may in itself produce additional injury to the lung. Yet, there are few available treatments for lung injury associated with sepsis or ventilation.



Now, scientists at Northwestern University have demonstrated that an enzyme vital to normal function of blood vessels also can be an Achilles heel during infection-induced or ventilator-induced lung injury. They believe that the enzyme holds significant potential as a drug discovery target for the treatment of acute lung injury.

As described in the May issue of Proceedings of the National Academy of Sciences, Mark Wainwright, M.D., and D. Martin Watterson identified a molecule, called myosin light chain kinase 210 (MLCK 210), that makes endothelial cells in the lung susceptible to injury during periods of inflammation.


Wainwright is assistant professor of pediatrics at the Feinberg School of Medicine at Northwestern University and a researcher at the Children’s Memorial Institute for Education and Research. Watterson is J.G. Searle Professor of Molecular Biology and Biochemistry, professor of molecular pharmacology and biological chemistry at the Feinberg School and director of the Northwestern University Drug Discovery Training Program.

Endothelial cells line blood vessels throughout the body and serve as a barrier to keep toxins in the blood from entering tissues and organs. MLCK 210 regulates normal endothelial cell function, but the contribution of MLCK 210 to the mechanisms of lung injury in the living animal was unknown.

Wainwright said that cell culture (or, in vitro) studies have identified several enzymes, including MLCK 210, in the regulation of endothelial barrier function, but no one had integrated the in vitro studies with disease injury and MLCK 210 function in a living animal.

Watterson genetically engineered mice that are missing the gene that codes for MLCK 210. The researchers exposed mice lacking MLCK 210 to a bacterial toxin that causes tissue injury as a result of severe infection. The MLCK 210 knockout mice are less susceptible to acute lung injury and also showed significant improvement in survival when exposed to a combination of toxin exposure and subsequent ventilator-induced injury.

This sequential injury is reminiscent of the clinical situation with life support for a critically ill patient.

The researchers also developed an MLCK inhibitor, an experimental drug that blocks the function of the enzyme, which they injected into normal mice with an intact MLCK 210 gene.

Normal mice exposed to bacterial toxin and ventilator-induced injury were protected by a single injection of the MLCK 210 inhibitor, a finding identical to that in the genetically altered mice lacking the MLCK 210 gene.

The researchers believe that their results and will enable scientists to conduct further studies involving the role of endothelial cells in heart disease, stroke and neurodegeneration, areas that the National Institutes of health has identified as a key research priority.

Co-authors were Janet Rossi; James Schavocky; Susan Crawford; David Steinhorn; Anastasia V. Velentza; Magdalena Zasadzki; Vladimir Shirinsky; Yuzhi Jia; Jacques Haiech; and Linda Van Eldik.

Elizabeth Crown | EurekAlert!
Further information:
http://www.nwu.edu/

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>