Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enzyme found in blood vessels likely target to treat lung injury

30.04.2003


Lung injury due to infection, such as in sepsis, accounts for hundreds of thousands of hospitalizations a year. Sepsis occurs in 2 percent of hospital admissions and is associated with a death rate of about 50 percent. Many of these patients require ventilation to support their breathing, which may in itself produce additional injury to the lung. Yet, there are few available treatments for lung injury associated with sepsis or ventilation.



Now, scientists at Northwestern University have demonstrated that an enzyme vital to normal function of blood vessels also can be an Achilles heel during infection-induced or ventilator-induced lung injury. They believe that the enzyme holds significant potential as a drug discovery target for the treatment of acute lung injury.

As described in the May issue of Proceedings of the National Academy of Sciences, Mark Wainwright, M.D., and D. Martin Watterson identified a molecule, called myosin light chain kinase 210 (MLCK 210), that makes endothelial cells in the lung susceptible to injury during periods of inflammation.


Wainwright is assistant professor of pediatrics at the Feinberg School of Medicine at Northwestern University and a researcher at the Children’s Memorial Institute for Education and Research. Watterson is J.G. Searle Professor of Molecular Biology and Biochemistry, professor of molecular pharmacology and biological chemistry at the Feinberg School and director of the Northwestern University Drug Discovery Training Program.

Endothelial cells line blood vessels throughout the body and serve as a barrier to keep toxins in the blood from entering tissues and organs. MLCK 210 regulates normal endothelial cell function, but the contribution of MLCK 210 to the mechanisms of lung injury in the living animal was unknown.

Wainwright said that cell culture (or, in vitro) studies have identified several enzymes, including MLCK 210, in the regulation of endothelial barrier function, but no one had integrated the in vitro studies with disease injury and MLCK 210 function in a living animal.

Watterson genetically engineered mice that are missing the gene that codes for MLCK 210. The researchers exposed mice lacking MLCK 210 to a bacterial toxin that causes tissue injury as a result of severe infection. The MLCK 210 knockout mice are less susceptible to acute lung injury and also showed significant improvement in survival when exposed to a combination of toxin exposure and subsequent ventilator-induced injury.

This sequential injury is reminiscent of the clinical situation with life support for a critically ill patient.

The researchers also developed an MLCK inhibitor, an experimental drug that blocks the function of the enzyme, which they injected into normal mice with an intact MLCK 210 gene.

Normal mice exposed to bacterial toxin and ventilator-induced injury were protected by a single injection of the MLCK 210 inhibitor, a finding identical to that in the genetically altered mice lacking the MLCK 210 gene.

The researchers believe that their results and will enable scientists to conduct further studies involving the role of endothelial cells in heart disease, stroke and neurodegeneration, areas that the National Institutes of health has identified as a key research priority.

Co-authors were Janet Rossi; James Schavocky; Susan Crawford; David Steinhorn; Anastasia V. Velentza; Magdalena Zasadzki; Vladimir Shirinsky; Yuzhi Jia; Jacques Haiech; and Linda Van Eldik.

Elizabeth Crown | EurekAlert!
Further information:
http://www.nwu.edu/

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>