Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


What makes the body absorb too much iron?


Cells in the intestine (A) absorb iron that is passed along to the bloodstream (B). Previously it was thought that the Hfe mutation found in Hemochromatosis acted to change the behaviour of these cells. The latest research shows that the mutation seemsto act primarily in the liver.

Researchers at EMBL and Harvard gain new insights into hemochromatosis

Like most nutrients, iron is good for people – in the right doses. When the body has enough iron, our cells stop absorbing it from food; if there is too little, they absorb more. This system breaks down in the most common inherited disease in the Western world: hemochromatosis, which affects about one in every 250 people and is often fatal if it is not recognized and treated. Now researchers at the European Molecular Biology Laboratory in Heidelberg (EMBL) and Harvard Medical School (U.S.) have linked the response of a gene in the liver to the disease. The study, which appears in the current issue of Nature Genetics, is changing our understanding of how hemochromatosis develops.

"Untreated iron overload can result in liver cancer, heart disease, or other fatal conditions," says Martina Muckenthaler, a staff scientist at EMBL in the research group of Matthias Hentze. "The mutation that causes the disease was thought to have its major effects in the intestine, where cells absorb iron from food. Our current study has changed that picture."

Sufferers of hemochromatosis have inherited a defective copy of a gene called Hfe from each parent. The mutation can be traced back several centuries into Celtic history, where it originated in a single person who passed it down to his or her children. It has now spread throughout Europe and the Western world.

The defect leads a person’s intestine to absorb too much iron from his or her diet. Over the course of many years, this builds up, and by middle age, the overload may be very serious. Hentze and his group at EMBL have been trying to trace these effects back to their molecular causes.

Until now, most researchers have thought that the problem stems from a faulty intestinal signal that there is too little iron, leading cells in the intestines to produce more transport proteins that draw iron inside.

By combining two approaches, the EMBL and Harvard teams have now rewritten this model. Their study shows that the link between Hfe and iron is probably in the liver, rather than the intestine.

The EMBL group was investigating iron absorption with a technology called DNA chips. The method allows scientists to monitor how a cell’s genes respond to changes – such as a raise in levels of iron. Working with the research team of Wilhelm Ansorge, Muckenthaler put together a set of probes that could watch for changes in 300 genes known to have some connection to iron.

Simultaneously, Nancy Andrews’ group at Harvard was working on hemochromatosis in mice – which are often used to create models of human disease. The Harvard scientists had developed strains of mice without Hfe, or with the mutant version found in hemochromatosis. Both strains absorbed too much iron and exhibited the symptoms of the disease.

The DNA chips were used to compare cells taken from these mice and their healthy cousins. In the former model, cells with defective Hfe were expected to behave like those of healthy mice with an iron deficiency – they ought to produce more iron-absorbing proteins in the intestine. That wasn’t the case.

So the researchers started to look farther afield for other effects of mutant Hfe. They discovered something intriguing in the liver. A molecule called hepcidin wasn’t being activated properly.

When iron levels rise in a healthy mouse, its liver produces more hepcidin, and hepcidin acts like a hormone to reduce iron absorption by the intestine. This didn’t happen in mice with mutant or missing Hfe – even when the researchers directly injected them with iron. This was proof that Hfe is necessary to make a connection between iron and hepcidin, and that shakes up the old model. The importance of low hepcidin production in hemochromatosis is further underlined by the work of Sophie Vaulont’s team at the Cochin Institute in Paris, which appears in the same issue of Nature Genetics. They were able to show that the liver does not load iron when hepcidin is added to mice lacking the hemochromatosis gene. It means that focus should change from the intestine to the liver – where the lack of Hfe seems to be doing the most damage.

How can hepcidin expression by the liver change iron absorption among intestinal cells? A lot of questions remain, Muckenthaler says, but data from the DNA chips suggest how this might be happening. Without hepcidin, the body can’t seem to put the brakes on intestinal molecule, called Cybrd1.

Normally iron atoms in that form they can’t be brought into cells. Cybrd1’s job is to reduce the number of charges to two, making iron transportable. If it were active all the time, a lot more of the body’s iron would be absorbable. When it isn’t active, there is very little to be absorbed. Hepcidin’s normal function might be to lock down Cybrd1, thereby shutting down the supply of available iron. This would make activating hepcidin – which can’t happen with a mutant form of Hfe – essential to stopping the flow of iron into the body.

This spells an important shift in hemochromatosis research: scientists will now turn their attention to the liver, in hopes of working out the details of the circuit that connects iron, Hfe and, hepcidin. It also hints strongly at a link between the body’s uptake of iron and the immune system, where hepcidin also has a role to play.

Source article

Regulatory defects in liver and intestine implicate abnormal hepcidin and Dcytb expression in mouse hemochromatosis.
Martina Muckenthaler, Cindy N.Roy, Ángel O. Custodio, Belén Miñana, Jos deGraaf, Lynne K.Montross,Nancy C.Andrews and Matthias W. Hentze
Nature Genetics, 21 April 2003,

Scientific contacts

Matthias Hentze
Meyerhofstrasse 1
D–69117 Heidelberg
Tel: +49 6221 387 501 or 502
Fax: +49 6221 387518

Martina Muckenthaler
Meyerhofstrasse 1
D–69117 Heidelberg
Tel: +49 6221 387 502 or 410
Fax: +49 6221 387518

Lena Reunis | EMBL
Further information:

More articles from Health and Medicine:

nachricht Scientists develop tiny tooth-mounted sensors that can track what you eat
22.03.2018 | Tufts University

nachricht NIH scientists describe potential antibody treatment for multidrug-resistant K. pneumoniae
14.03.2018 | NIH/National Institute of Allergy and Infectious Diseases

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>