Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mouse research sheds new light on human genetic diseases

28.04.2003


A team of researchers headed by Douglas R. Cavener, professor and head of the Department of Biology at Penn State University, has announced important findings about the causes of three human diseases: severe, juvenile-onset diabetes; osteoporosis; and Wolcott-Rallison Syndrome, a rare condition whose sufferers exhibit a combination of diabetes, retarded growth, and skeletal abnormalities. Their work suggests promising lines of research for the therapeutic treatment of these diseases. The work will be described in an article in the August 2003 issue of the journal Endocrinology.


Three mice that are littermates (siblings of the same age). The two mice on the left (one partially hiding under the big mouse) are dwarf mice caused by the Perk mutation. They are less than half the size of the mouse on the right, which is normal.


Micro x-ray computed tomography (microCT) images of the tibia of normal and Perk mutant mice. The mutant shows thin cortical bone with deformations and gaping holes. "If it wasn’t for muscle and connective tissue to hold these fragile bones together, these mice would fall apart," Cavener says.



Over several years, Cavener’s team has developed and investigated a particular strain of "knockout" mice that are genetically unable to produce the enzyme PERK (pancreatic endoplasmic reticulum kinase). Cavener and his team hypothesize that the PERK enzyme is a specific or global regulator of protein synthesis, which means that the knockout mice are especially useful in unraveling complex physiological and developmental processes. "We are now able to investigate what happens when a particular gene is missing, to see what functions go wrong. Then we work backwards to fill in mechanisms that link the genotype to the phenotype" or the observable outcome, Cavener says.

PERK knockout mice have a very low survival rate because the biomedical problems caused by the absence of the PERK enzyme are so severe. Fully 63 percent die during gestation or the first few days of life which can be traced to failures in the creation or delivery of specific proteins.


The surviving PERK knockout mice have three distinct problems that parallel those seen in humans with Wolcott-Rallison Syndrome. First, the knockout mice grow very slowly so that, as adults, they are about half the size of normal mice. They are strikingly deficient in a factor which regulates growth known as IGF-1. Newborn knockout mice average only about 25% as much IGF-1 in their liver and serum as normal mice. Second, knockout mice have many skeletal abnormalities such as dangerously fragile and porous bones, hunched backs, and splayed limbs. These abnormalities are caused by a lack of collagen, a major structural component of bone. Third, the ability of knockout mice to use sugar (glucose) is abnormal. At birth, the mice are apparently healthy in this regard, with normal levels of glucose and glucose products in their livers and normal numbers of insulin-producing beta cells in their pancreases. After three weeks, juvenile knockout mice develop severe diabetes. Their glucose levels soar to three to four times normal levels and the number of beta cells in their pancreases is reduced. After six weeks, insulin-producing beta cells are rare or completely absent.

In one experiment, Cavener and colleagues focused on the mechanisms behind the retarded growth of PERK knockout mice. By injecting the PERK knockout mice with IGF-1 twice daily during the first three weeks of life, researchers were able to accelerate the neonatal growth rate of the mice. Their growth was markedly improved but not restored to normal rates. They concluded that defects in the regulation of IGF-1 were at least partially responsible for the retarded growth rates in PERK deficient mice. The improvement produced by treating the mice with IGF-1 has exciting implications for developing therapeutic interventions for people diagnosed with Wolcott-Rallison Syndrome.

Cavener emphasizes that it is extremely important that the growth and skeletal problems occur earlier than and independently from the diabetes in these mice. "Knowing which problems are the primary effects of diabetes, and which are independent effects produced by a defect in the same gene, may be of great importance in treating the disease," Cavener predicts.

In a second experiment, Cavener and his colleagues demonstrated the complexity of the various functions of the PERK gene. They produced transgenic mice that carried a single copy of the PERK gene that was expressed only in the insulin-producing beta cells. Normal mice carry two copies of this gene and knockout mice have none. The PERK gene produced a dramatic change in glucose metabolism. Unlike PERK deficient mice, transgenic mice do not become diabetic as juveniles and retain normal numbers of insulin-producing beta cells.

During the neonatal period the transgenic mice still suffered from retarded growth. Surprisingly, Cavener’s team found that the transgenic mice resumed normal rates of growth as they aged past three weeks. This finding suggests that the slowed rate of growth in juvenile knockout mice is probably a secondary effect of diabetes.

The results of this research program lead Cavener to theorize that the major function of PERK is to sense the activity of cells that secrete such vital proteins as insulin and collagen and to signal the cells to adjust their rate of secretion or cell division to match the needs of the body for these important proteins. Much of the current research in Cavener’s group focuses on testing this hypothesis.

In addition to Cavener, other members of the research team include: Ami Frank, Kaori Iida, Sheng’ai Li, Yulin Li, Shun-Hsin Liang, Barbara McGrath, Jeff O’Neil, Jamie Reinert, Frank Zambito, Peichuan Zhang, and Wei Zhang, all of Penn State; Maureen Gannon of the Vanderbilt University School of Medicine; Kun Ma of the Indiana University School of Medicine, and Kelly McNaughton of Vanderbilt University. This research was funded by the Culpeper Foundation, the Vanderbilt Clinical Nurition Research Unit, Penn State University, and National Institutes of Health grant GM56957 to Cavener.


###
CONTACTS: Douglas R. Cavener: phone 814-865-4562, e-mail drc9@psu.edu
Barbara K. Kennedy (PIO): 814-863-4682, science@psu.edu

Barbara K. Kennedy | EurekAlert!
Further information:
http://www.psu.edu/
http://www.science.psu.edu/alert/Cavener4-2003.htm

More articles from Health and Medicine:

nachricht Minimising risks of transplants
22.02.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht FAU researchers demonstrate that an oxygen sensor in the body reduces inflammation
22.02.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>