Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research sheds new light on why some prostate cancers become untreatable

28.04.2003


Three new studies by researchers at UC Davis Cancer Center provide new pieces to the puzzle of why some prostate cancers become resistant to androgen suppression therapy. The studies were presented Sunday afternoon at the 2003 annual meeting of the American Urological Association.



Of the nearly 190,000 men in the United States who develop prostate cancer every year, a substantial proportion will require androgen suppression therapy to reduce levels of male hormones -- a treatment that can shrink prostate cancers or slow their growth. Hormone suppression therapy eventually fails, however, as prostate cancer cells adapt to an androgen-depleted environment, a state known as androgen independence. When this happens, few treatment options remain.

Determining how androgen independence develops, and how the process can be derailed, is a chief focus of prostate cancer research at UC Davis. "If we could prevent androgen independence from happening, it would have a dramatic impact on treatment and outcomes for prostate cancer," says Ralph deVere White, chair of urology at UC Davis School of Medicine and Medical Center and director of the UC Davis Cancer Center.


Two of the studies presented Sunday report new information about p53’s role in androgen independence. Mutations in p53 are seen in two out of three prostate cancers that have developed androgen independence. In one of the studies, deVere White and his colleagues demonstrated that four particular p53 mutations -- G245S, R248W, R273C and R273H -- facilitate androgen-independent growth in human prostate cells. The researchers were able to grow the four mutant cell lines in androgen-free conditions both in cell culture and in female laboratory mice. In addition, the researchers successfully used siRNA technology to target an siRNA molecule to the R273H mutation and down-regulate (suppress) its activity -- suggesting that siRNA technology may have therapeutic value in the treatment of hormone-independent prostate cancer.

In a second study, Clifford G. Tepper and his colleagues used microarray technology to hunt for specific genes that contribute to androgen independence. They reported Sunday that over-expression of one gene, known as Id-1, is a feature of androgen-independent tumors with p53 mutations. In order to identify Id-1, the researchers profiled more than 12,000 genes. They found 21 that are over-expressed in cells harboring G245S, R248W, R273C or R273H. Further analysis singled out one, the Id-1 gene, which produces a protein known to suppress cell aging and promote tumor aggressiveness.

In the third study, Christopher Evans and his colleagues report development of the first in vivo neuroendocrine model to study the progression of prostate cancer cells from androgen dependence to androgen independence. Using the model, the researchers demonstrated that neuroendocrine differentiation contributes to androgen-independent prostate cancer growth, proliferation and migration in an androgren-free environment.


UC Davis Cancer Center, the only National Cancer Institute-designated center between San Francisco and Portland, Ore., is a program of the UC Davis School of Medicine and Medical Center.

Public Affairs
UC Davis Health System
4900 Broadway, Suite 1200
Sacramento, CA 95820
Phone: (916) 734-9040
FAX: (916) 734-9056
E-mail: publicaffairs@ucdavis.edu


Claudia Morain | EurekAlert!
Further information:
http://news.ucdmc.ucdavis.edu

More articles from Health and Medicine:

nachricht How cancer metastasis happens: Researchers reveal a key mechanism
19.01.2018 | Weill Cornell Medicine

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

Method uses DNA, nanoparticles and lithography to make optically active structures

19.01.2018 | Materials Sciences

More genes are active in high-performance maize

19.01.2018 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>