Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research sheds new light on why some prostate cancers become untreatable

28.04.2003


Three new studies by researchers at UC Davis Cancer Center provide new pieces to the puzzle of why some prostate cancers become resistant to androgen suppression therapy. The studies were presented Sunday afternoon at the 2003 annual meeting of the American Urological Association.



Of the nearly 190,000 men in the United States who develop prostate cancer every year, a substantial proportion will require androgen suppression therapy to reduce levels of male hormones -- a treatment that can shrink prostate cancers or slow their growth. Hormone suppression therapy eventually fails, however, as prostate cancer cells adapt to an androgen-depleted environment, a state known as androgen independence. When this happens, few treatment options remain.

Determining how androgen independence develops, and how the process can be derailed, is a chief focus of prostate cancer research at UC Davis. "If we could prevent androgen independence from happening, it would have a dramatic impact on treatment and outcomes for prostate cancer," says Ralph deVere White, chair of urology at UC Davis School of Medicine and Medical Center and director of the UC Davis Cancer Center.


Two of the studies presented Sunday report new information about p53’s role in androgen independence. Mutations in p53 are seen in two out of three prostate cancers that have developed androgen independence. In one of the studies, deVere White and his colleagues demonstrated that four particular p53 mutations -- G245S, R248W, R273C and R273H -- facilitate androgen-independent growth in human prostate cells. The researchers were able to grow the four mutant cell lines in androgen-free conditions both in cell culture and in female laboratory mice. In addition, the researchers successfully used siRNA technology to target an siRNA molecule to the R273H mutation and down-regulate (suppress) its activity -- suggesting that siRNA technology may have therapeutic value in the treatment of hormone-independent prostate cancer.

In a second study, Clifford G. Tepper and his colleagues used microarray technology to hunt for specific genes that contribute to androgen independence. They reported Sunday that over-expression of one gene, known as Id-1, is a feature of androgen-independent tumors with p53 mutations. In order to identify Id-1, the researchers profiled more than 12,000 genes. They found 21 that are over-expressed in cells harboring G245S, R248W, R273C or R273H. Further analysis singled out one, the Id-1 gene, which produces a protein known to suppress cell aging and promote tumor aggressiveness.

In the third study, Christopher Evans and his colleagues report development of the first in vivo neuroendocrine model to study the progression of prostate cancer cells from androgen dependence to androgen independence. Using the model, the researchers demonstrated that neuroendocrine differentiation contributes to androgen-independent prostate cancer growth, proliferation and migration in an androgren-free environment.


UC Davis Cancer Center, the only National Cancer Institute-designated center between San Francisco and Portland, Ore., is a program of the UC Davis School of Medicine and Medical Center.

Public Affairs
UC Davis Health System
4900 Broadway, Suite 1200
Sacramento, CA 95820
Phone: (916) 734-9040
FAX: (916) 734-9056
E-mail: publicaffairs@ucdavis.edu


Claudia Morain | EurekAlert!
Further information:
http://news.ucdmc.ucdavis.edu

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>