Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The mechanics of anti-tumor activity outlined

23.04.2003


Inhibiting the growth and the angiogenic properties of cancer is an important modality for cancer treatment and research. Angiogenesis, the development of new blood vessels from pre-existing vasculature, supports the development of many diseases including cancer, rheumatoid arthritis and others. In the case of cancer, angiogenesis is essential for the growth, progression and metastasis of a tumor and thus, agents that inhibit angiogenesis are attractive therapeutic options.



In an article published today in the April issue of Cancer Cell (Vol. 3, No. 4, pg. 363), Winship Cancer Institute (WCI) researchers report that 2-methoxyestradiol (2ME2) inhibits tumor growth and angiogenesis by suppressing hypoxia-inducible factor-1 (HIF). HIF is a factor that is over-expressed in more than 70% of human cancers and their metastases, including breast, prostate, brain, lung, and head and neck cancers.

Besides cancer, HIF is also associated with diseases of the bone and diseases that are mediated by inflammation such as rheumatoid arthritis.


The paper, "2ME2 Inhibits Tumor Growth and Angiogenesis by Disrupting Microtubules and Dysregulating HIF," was authored by WCI and EmoryUniversity scientists Nicola J. Mabjeesh, MD, PhD, Daniel Escuin, and Paraskevi Giannakakou, PhD. The paper was co-authored with scientists Theresa LaVallee, PhD, Victor Pribluda, PhD, and Glenn Swartz from EntreMed, a biopharmaceutical leader in angiogenesis research and product development.

2ME2 is a well-tolerated, orally active small molecule with anti-angiogenic and anti-tumor activity currently in Phase I/II clinical trials under the name PanzemÒ The trials are being conducted by EntreMed.

"This report contributes to the body of knowledge that will help us better understand the basic mechanism by which 2ME2 inhibits cancer cell growth and tumor angiogenesis," says Dr. Giannakakou.

Drs. Mabjeesh and Giannakakou report that 2ME2 inhibits tumor growth and angiogenesis by targeting microtubules, or a cell’s skeleton, and suppressing HIF activity.

"The study is the first to demonstrate that an agent, 2ME2, inhibits the assembly of microtubules in the tumors of treated animals," says Dr. Giannakakou. "Microtubule disruption results in the down regulation of HIF-1a. While this effect is not unique to 2ME2 when compared to Taxol or vincristine in preclinical models, it is the most more potent HIF inhibitor of all the microtubule-targeting chemotherapeutic agents tested that are used to treat cancer."

The paper outlines the mechanism by which 2ME2 downregulates HIF; a finding that had not been previously discovered. Utilizing a pharmacological approach and xenograft models, which are mouse models of human cancer, investigators showed that 2ME2 depolymerizes microtubules and blocks HIF-1a nuclear accumulation and HIF-transcriptional activity, or the transfer of genetic code information from one kind of nucleic acid to another.

"This research is important because we see for the first time a mechanistic link between targeting of the microtubule cytoskeleton and inhibition of angiogenesis," says Dr. Giannakakou. "This work will provide a new framework to study and develop novel compounds for the treatment of cancer."

In addition to Drs. Mabjeesh, and Giannakakou and PhD-candidate Daniel Escuin, WCI investigators Margaret T. Willard, PhD, Hua Zhong, PhD, and Jonathan Simons, MD contributed to the paper.

Vincent Dollard | EurekAlert!
Further information:
http://www.emory.edu/

More articles from Health and Medicine:

nachricht New leukemia treatment offers hope
23.09.2016 | King Abdullah University of Science and Technology

nachricht Alzheimer’s: Cellular Mechanism Provides Explanation Model for Declining Memory Performance
21.09.2016 | Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Chains of nanogold – forged with atomic precision

23.09.2016 | Life Sciences

New leukemia treatment offers hope

23.09.2016 | Health and Medicine

Self-assembled nanostructures hit their target

23.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>