Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The mechanics of anti-tumor activity outlined

23.04.2003


Inhibiting the growth and the angiogenic properties of cancer is an important modality for cancer treatment and research. Angiogenesis, the development of new blood vessels from pre-existing vasculature, supports the development of many diseases including cancer, rheumatoid arthritis and others. In the case of cancer, angiogenesis is essential for the growth, progression and metastasis of a tumor and thus, agents that inhibit angiogenesis are attractive therapeutic options.



In an article published today in the April issue of Cancer Cell (Vol. 3, No. 4, pg. 363), Winship Cancer Institute (WCI) researchers report that 2-methoxyestradiol (2ME2) inhibits tumor growth and angiogenesis by suppressing hypoxia-inducible factor-1 (HIF). HIF is a factor that is over-expressed in more than 70% of human cancers and their metastases, including breast, prostate, brain, lung, and head and neck cancers.

Besides cancer, HIF is also associated with diseases of the bone and diseases that are mediated by inflammation such as rheumatoid arthritis.


The paper, "2ME2 Inhibits Tumor Growth and Angiogenesis by Disrupting Microtubules and Dysregulating HIF," was authored by WCI and EmoryUniversity scientists Nicola J. Mabjeesh, MD, PhD, Daniel Escuin, and Paraskevi Giannakakou, PhD. The paper was co-authored with scientists Theresa LaVallee, PhD, Victor Pribluda, PhD, and Glenn Swartz from EntreMed, a biopharmaceutical leader in angiogenesis research and product development.

2ME2 is a well-tolerated, orally active small molecule with anti-angiogenic and anti-tumor activity currently in Phase I/II clinical trials under the name PanzemÒ The trials are being conducted by EntreMed.

"This report contributes to the body of knowledge that will help us better understand the basic mechanism by which 2ME2 inhibits cancer cell growth and tumor angiogenesis," says Dr. Giannakakou.

Drs. Mabjeesh and Giannakakou report that 2ME2 inhibits tumor growth and angiogenesis by targeting microtubules, or a cell’s skeleton, and suppressing HIF activity.

"The study is the first to demonstrate that an agent, 2ME2, inhibits the assembly of microtubules in the tumors of treated animals," says Dr. Giannakakou. "Microtubule disruption results in the down regulation of HIF-1a. While this effect is not unique to 2ME2 when compared to Taxol or vincristine in preclinical models, it is the most more potent HIF inhibitor of all the microtubule-targeting chemotherapeutic agents tested that are used to treat cancer."

The paper outlines the mechanism by which 2ME2 downregulates HIF; a finding that had not been previously discovered. Utilizing a pharmacological approach and xenograft models, which are mouse models of human cancer, investigators showed that 2ME2 depolymerizes microtubules and blocks HIF-1a nuclear accumulation and HIF-transcriptional activity, or the transfer of genetic code information from one kind of nucleic acid to another.

"This research is important because we see for the first time a mechanistic link between targeting of the microtubule cytoskeleton and inhibition of angiogenesis," says Dr. Giannakakou. "This work will provide a new framework to study and develop novel compounds for the treatment of cancer."

In addition to Drs. Mabjeesh, and Giannakakou and PhD-candidate Daniel Escuin, WCI investigators Margaret T. Willard, PhD, Hua Zhong, PhD, and Jonathan Simons, MD contributed to the paper.

Vincent Dollard | EurekAlert!
Further information:
http://www.emory.edu/

More articles from Health and Medicine:

nachricht Antibiotic effective against drug-resistant bacteria in pediatric skin infections
17.02.2017 | University of California - San Diego

nachricht Tiny magnetic implant offers new drug delivery method
14.02.2017 | University of British Columbia

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>