Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Technique brings immune-based therapies closer to reality

23.04.2003


Johns Hopkins researchers have developed an inexpensive, reliable way to make large quantities of targeted immune cells that one day may provide a life-saving defense against cancers and viral infections.



Using artificial antigen presenting cells, or aAPCs, the scientists converted run-of-the-mill immune cells into a horde of specific, targeted invader-fighting machines, they report in the advance online version of Nature Medicine on April 21.

"The ability to make vast quantities of targeted, antigen-specific immune cells in the lab broadens their potential in tackling a wide array of diseases, especially cancers," says Jonathan Schneck, Ph.D., professor of pathology and medicine at the Johns Hopkins School of Medicine. "Our technique provides an off-the-shelf way to create these cells."


The immune system normally defends the body against invaders. However, in cancer, tumor cells aren’t recognized as "foreign," and after bone marrow and organ transplant the immune system has to be suppressed to avoid rejection of the transplant, opening the door to viral infections. Specially targeted immune cells that fill these defensive gaps are already being tested as experimental "cancer vaccines" in patients with melanoma and multiple myeloma and as virus fighters after bone marrow transplant.

However, the technological advance reported by the Johns Hopkins team overcomes a major weakness of current methods for making these targeted immune cells, known as antigen-specific cytotoxic T cells (CTLs) -- namely the methods’ reliance on a patient’s own dendritic cells. Dendritic cells are immune system sentries that wave the proteins, or antigens, of foreign invaders like flags, teaching immune system T cells to recognize the invading cells and kill them.

"But dendritic cells vary in quality and number from patient to patient," says first author Mathias Oelke, Ph.D., a postdoctoral fellow in pathology at Johns Hopkins. "Many patients simply can’t provide the number of dendritic cells needed to get a vaccine that would work."

The aAPCs made by the Hopkins team created twice as many specific, targeted CTLs as using dendritic cells, and could have made even more, says Oelke, who researched dendritic cell-derived CTLs in Germany. Both aAPCs and dendritic cells convert generic immune cells in the blood into targeted CTLs.

The aAPCs were made using a protein called HLA-Ig, which in 1998 Schneck showed could mimic the antigen-waving ability of dendritic cells. In the latest research, Oelke turned tiny magnetic beads into aAPCs by coating them with HLA-Ig and another protein that stimulates cell growth and exposing the beads to antigens from either melanoma or cytomegalovirus.

"Using the aAPCs, we were able to make a tremendous amount of CTLs while maintaining their specificity," says Schneck. "Losing specificity as CTL numbers rise has been a problem with other techniques."

Before aAPCs could be used to make CTLs for testing in patients, the production method must be modified to produce clinical grade cells, a process Oelke suggests could take two to four years.

Authors on the report are Oelke, Schneck and Dominic Didiano of Johns Hopkins; Marcela Maus and Carl June of the Abramson Family Cancer Research Institute at the University of Pennsylvania; and Andreas Mackensen of the University of Regensburg, Germany. The Johns Hopkins researchers were funded by the National Institutes of Health and the Dr. Mildred-Scheel-Stiftung Deutsche Krebshilfe Foundation.

Under a licensing agreement between Pharmingen and the Johns Hopkins University, Schneck is entitled to a share of royalty received by the University on sales of products related to technology described in this article. Schneck is a paid consultant to Pharmingen. The terms of this arrangement are being managed by The Johns Hopkins University in accordance with its conflict of interest policies.

Joanna Downer | EurekAlert!
Further information:
http://www.hopkinsmedicine.org/

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>