Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Technique brings immune-based therapies closer to reality

23.04.2003


Johns Hopkins researchers have developed an inexpensive, reliable way to make large quantities of targeted immune cells that one day may provide a life-saving defense against cancers and viral infections.



Using artificial antigen presenting cells, or aAPCs, the scientists converted run-of-the-mill immune cells into a horde of specific, targeted invader-fighting machines, they report in the advance online version of Nature Medicine on April 21.

"The ability to make vast quantities of targeted, antigen-specific immune cells in the lab broadens their potential in tackling a wide array of diseases, especially cancers," says Jonathan Schneck, Ph.D., professor of pathology and medicine at the Johns Hopkins School of Medicine. "Our technique provides an off-the-shelf way to create these cells."


The immune system normally defends the body against invaders. However, in cancer, tumor cells aren’t recognized as "foreign," and after bone marrow and organ transplant the immune system has to be suppressed to avoid rejection of the transplant, opening the door to viral infections. Specially targeted immune cells that fill these defensive gaps are already being tested as experimental "cancer vaccines" in patients with melanoma and multiple myeloma and as virus fighters after bone marrow transplant.

However, the technological advance reported by the Johns Hopkins team overcomes a major weakness of current methods for making these targeted immune cells, known as antigen-specific cytotoxic T cells (CTLs) -- namely the methods’ reliance on a patient’s own dendritic cells. Dendritic cells are immune system sentries that wave the proteins, or antigens, of foreign invaders like flags, teaching immune system T cells to recognize the invading cells and kill them.

"But dendritic cells vary in quality and number from patient to patient," says first author Mathias Oelke, Ph.D., a postdoctoral fellow in pathology at Johns Hopkins. "Many patients simply can’t provide the number of dendritic cells needed to get a vaccine that would work."

The aAPCs made by the Hopkins team created twice as many specific, targeted CTLs as using dendritic cells, and could have made even more, says Oelke, who researched dendritic cell-derived CTLs in Germany. Both aAPCs and dendritic cells convert generic immune cells in the blood into targeted CTLs.

The aAPCs were made using a protein called HLA-Ig, which in 1998 Schneck showed could mimic the antigen-waving ability of dendritic cells. In the latest research, Oelke turned tiny magnetic beads into aAPCs by coating them with HLA-Ig and another protein that stimulates cell growth and exposing the beads to antigens from either melanoma or cytomegalovirus.

"Using the aAPCs, we were able to make a tremendous amount of CTLs while maintaining their specificity," says Schneck. "Losing specificity as CTL numbers rise has been a problem with other techniques."

Before aAPCs could be used to make CTLs for testing in patients, the production method must be modified to produce clinical grade cells, a process Oelke suggests could take two to four years.

Authors on the report are Oelke, Schneck and Dominic Didiano of Johns Hopkins; Marcela Maus and Carl June of the Abramson Family Cancer Research Institute at the University of Pennsylvania; and Andreas Mackensen of the University of Regensburg, Germany. The Johns Hopkins researchers were funded by the National Institutes of Health and the Dr. Mildred-Scheel-Stiftung Deutsche Krebshilfe Foundation.

Under a licensing agreement between Pharmingen and the Johns Hopkins University, Schneck is entitled to a share of royalty received by the University on sales of products related to technology described in this article. Schneck is a paid consultant to Pharmingen. The terms of this arrangement are being managed by The Johns Hopkins University in accordance with its conflict of interest policies.

Joanna Downer | EurekAlert!
Further information:
http://www.hopkinsmedicine.org/

More articles from Health and Medicine:

nachricht Custom-tailored strategy against glioblastomas
26.09.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New leukemia treatment offers hope
23.09.2016 | King Abdullah University of Science and Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

 
Latest News

New imaging technique in Alzheimer’s disease - opens up possibilities for new drug development

28.09.2016 | Medical Engineering

Innovate coating extends the life of materials for industrial use

28.09.2016 | Materials Sciences

Blockchain Set to Transform the Financial Services Market

28.09.2016 | Business and Finance

VideoLinks
B2B-VideoLinks
More VideoLinks >>>