Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A New Way To See Vessels in the Human Body

22.04.2003



Vessels are important parts of our body. Their function is critical to our well-being. For years, doctors have tried various tools to take pictures of arteries that would help them in diagnosing or preventing diseases. This has not been an easy task, however, and sometimes they have to use imaging methods that may have some harmful side effects. It has always been a challenge to take clear pictures of vessel without the negative side effects. Here, we suggest a new way that may help us to achieve this goal.

Vessels in our body are narrow tubes, with many branches along the way. Each segment may be thought of as a string, much like a piano string, extending from one point to another. Hammering on a piano string helps a tuner to "visualize" the string and find out if the string is in a good condition or not. We use the same concept, but with more sophistication, in our new imaging method. In our method, we tap a vessel to make it vibrate at its natural tone, and we record the sound produce by the "singing" vessel. As we move the tapping point across the area around the vessel, we record the sound and map point-by-point to make an image. The sound would be strong only if we are tapping on the vessel. The result is a "picture" of the vessel. This picture actually shows the vibration or sound of the vessel, so we may call it a "sound" image. If there is a change in vessel properties, for example due to a disease, the change will effect the natural tone of the vessel and therefore would be visible in this "sound" image.

In practice, the tapping is done with a specially designed ultrasound probe and the sound is recorded by a sensitive laser system that detects vessel vibrations from outside. This way we do not need to have direct access to the vessel. The method is considered safe because we do not use harmful radiations. Our initial experiments on objects resembling human vessels have shown promising results.



Xiaoming Zhang | American Institute of Physics
Further information:
http://www.acoustics.org/press/145th/Zhang.htm

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>