Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A New Way To See Vessels in the Human Body

22.04.2003



Vessels are important parts of our body. Their function is critical to our well-being. For years, doctors have tried various tools to take pictures of arteries that would help them in diagnosing or preventing diseases. This has not been an easy task, however, and sometimes they have to use imaging methods that may have some harmful side effects. It has always been a challenge to take clear pictures of vessel without the negative side effects. Here, we suggest a new way that may help us to achieve this goal.

Vessels in our body are narrow tubes, with many branches along the way. Each segment may be thought of as a string, much like a piano string, extending from one point to another. Hammering on a piano string helps a tuner to "visualize" the string and find out if the string is in a good condition or not. We use the same concept, but with more sophistication, in our new imaging method. In our method, we tap a vessel to make it vibrate at its natural tone, and we record the sound produce by the "singing" vessel. As we move the tapping point across the area around the vessel, we record the sound and map point-by-point to make an image. The sound would be strong only if we are tapping on the vessel. The result is a "picture" of the vessel. This picture actually shows the vibration or sound of the vessel, so we may call it a "sound" image. If there is a change in vessel properties, for example due to a disease, the change will effect the natural tone of the vessel and therefore would be visible in this "sound" image.

In practice, the tapping is done with a specially designed ultrasound probe and the sound is recorded by a sensitive laser system that detects vessel vibrations from outside. This way we do not need to have direct access to the vessel. The method is considered safe because we do not use harmful radiations. Our initial experiments on objects resembling human vessels have shown promising results.



Xiaoming Zhang | American Institute of Physics
Further information:
http://www.acoustics.org/press/145th/Zhang.htm

More articles from Health and Medicine:

nachricht Serious children’s infections also spreading in Switzerland
26.07.2017 | Universitätsspital Bern

nachricht New vaccine production could improve flu shot accuracy
25.07.2017 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>