Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A New Way To See Vessels in the Human Body

22.04.2003



Vessels are important parts of our body. Their function is critical to our well-being. For years, doctors have tried various tools to take pictures of arteries that would help them in diagnosing or preventing diseases. This has not been an easy task, however, and sometimes they have to use imaging methods that may have some harmful side effects. It has always been a challenge to take clear pictures of vessel without the negative side effects. Here, we suggest a new way that may help us to achieve this goal.

Vessels in our body are narrow tubes, with many branches along the way. Each segment may be thought of as a string, much like a piano string, extending from one point to another. Hammering on a piano string helps a tuner to "visualize" the string and find out if the string is in a good condition or not. We use the same concept, but with more sophistication, in our new imaging method. In our method, we tap a vessel to make it vibrate at its natural tone, and we record the sound produce by the "singing" vessel. As we move the tapping point across the area around the vessel, we record the sound and map point-by-point to make an image. The sound would be strong only if we are tapping on the vessel. The result is a "picture" of the vessel. This picture actually shows the vibration or sound of the vessel, so we may call it a "sound" image. If there is a change in vessel properties, for example due to a disease, the change will effect the natural tone of the vessel and therefore would be visible in this "sound" image.

In practice, the tapping is done with a specially designed ultrasound probe and the sound is recorded by a sensitive laser system that detects vessel vibrations from outside. This way we do not need to have direct access to the vessel. The method is considered safe because we do not use harmful radiations. Our initial experiments on objects resembling human vessels have shown promising results.



Xiaoming Zhang | American Institute of Physics
Further information:
http://www.acoustics.org/press/145th/Zhang.htm

More articles from Health and Medicine:

nachricht Tracking movement of immune cells identifies key first steps in inflammatory arthritis
23.01.2017 | Massachusetts General Hospital

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>